308210: CF1483A. Basic Diplomacy

Memory Limit:512 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Basic Diplomacy

题意翻译

Aleksey 有 $n$ 个朋友和 $m$ 天假期,每天他会选一个朋友和他一起玩团队游戏。而每天只有特定的朋友能和他玩。如果一个朋友被选了 $\left\lceil\dfrac{m}{2}\right\rceil$ 次,别的朋友就会吃醋。问是否存在一种方案使得没有朋友吃醋。 ## 输入格式 第一行一个整数 $t(1\le t \le10000)$,表示数据组数 对于每组数据,第一行两个整数 $n,m$。 接下来 $m$ 行,每行第一个整数为 $k$,接下来 $k$ 个整数,第 $i$ 个整数 $q_i$ 表示编号为 $q_i$ 的朋友在第 $m$ 天有时间玩。 ## 输出格式 若存在方案,第一行输出 `YES`,第二行输出方案。反之输出 `NO`。 $1\leq n,m\leq 10^5$

题目描述

Aleksey has $ n $ friends. He is also on a vacation right now, so he has $ m $ days to play this new viral cooperative game! But since it's cooperative, Aleksey will need one teammate in each of these $ m $ days. On each of these days some friends will be available for playing, and all others will not. On each day Aleksey must choose one of his available friends to offer him playing the game (and they, of course, always agree). However, if any of them happens to be chosen strictly more than $ \left\lceil\dfrac{m}{2}\right\rceil $ times, then all other friends are offended. Of course, Aleksey doesn't want to offend anyone. Help him to choose teammates so that nobody is chosen strictly more than $ \left\lceil\dfrac{m}{2}\right\rceil $ times.

输入输出格式

输入格式


Each test contains multiple test cases. The first line contains the number of test cases $ t $ ( $ 1 \le t \le 10\,000 $ ). Description of the test cases follows. The first line of each test case contains two integers $ n $ and $ m $ ( $ 1\leq n, m\leq 100\,000 $ ) standing for the number of friends and the number of days to play, respectively. The $ i $ -th of the following $ m $ lines contains an integer $ k_i $ ( $ 1\leq k_i\leq n $ ), followed by $ k_i $ distinct integers $ f_{i1} $ , ..., $ f_{ik_i} $ ( $ 1\leq f_{ij}\leq n $ ), separated by spaces — indices of available friends on the day $ i $ . It is guaranteed that the sums of $ n $ and $ m $ over all test cases do not exceed $ 100\,000 $ . It's guaranteed that the sum of all $ k_i $ over all days of all test cases doesn't exceed $ 200\,000 $ .

输出格式


Print an answer for each test case. If there is no way to achieve the goal, print "NO". Otherwise, in the first line print "YES", and in the second line print $ m $ space separated integers $ c_1 $ , ..., $ c_m $ . Each $ c_i $ must denote the chosen friend on day $ i $ (and therefore must be one of $ f_{ij} $ ). No value must occur more than $ \left\lceil\dfrac{m}{2}\right\rceil $ times. If there is more than one possible answer, print any of them.

输入输出样例

输入样例 #1

2
4 6
1 1
2 1 2
3 1 2 3
4 1 2 3 4
2 2 3
1 3
2 2
1 1
1 1

输出样例 #1

YES
1 2 1 1 2 3 
NO

Input

题意翻译

Aleksey 有 $n$ 个朋友和 $m$ 天假期,每天他会选一个朋友和他一起玩团队游戏。而每天只有特定的朋友能和他玩。如果一个朋友被选了 $\left\lceil\dfrac{m}{2}\right\rceil$ 次,别的朋友就会吃醋。问是否存在一种方案使得没有朋友吃醋。 ## 输入格式 第一行一个整数 $t(1\le t \le10000)$,表示数据组数 对于每组数据,第一行两个整数 $n,m$。 接下来 $m$ 行,每行第一个整数为 $k$,接下来 $k$ 个整数,第 $i$ 个整数 $q_i$ 表示编号为 $q_i$ 的朋友在第 $m$ 天有时间玩。 ## 输出格式 若存在方案,第一行输出 `YES`,第二行输出方案。反之输出 `NO`。 $1\leq n,m\leq 10^5$

加入题单

上一题 下一题 算法标签: