308239: CF1487E. Cheap Dinner
Memory Limit:512 MB
Time Limit:4 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Cheap Dinner
题意翻译
#### 题目描述 有 $4$ 种菜类——开胃菜,主菜,饮品和甜点。一顿晚饭由 $4$ 种菜类各一道组成。 对于第 $i$ 种菜类,共有 $n_i$ 种供选择。开胃菜、主菜、饮品和甜点价格分别为 $a_i$、$b_i$、$c_i$、$d_i$。 有些菜品不能搭配。对于开胃菜和主菜来说,有 $m_1$ 对不能搭配。对于主菜和饮品、饮品和甜点分别有 $m_2$,$m_3$ 对。 试问总价格最小的晚饭需要多少钱? #### 输入格式 第一行有 $n_1$、$n_2$、$n_3$、$n_4$; 接下来四行分别为 $a_i$,$b_i$,$c_i$,$d_i$; 接下来一行为 $m_1$,接下来 $m_1$ 行中,每一行有 $x_i$,$y_i$,表示第 $x_i$ 道开胃菜和第 $y_i$ 道主菜不能搭配。 主菜和饮品,饮品和甜点的搭配需求也以相同的方式输入。 #### 输出格式 如果不存在,输出 `-1`; 否则,输出最小花费。 #### 数据规模与约定 $1\le n_i\le 150000$,$0\le m_i\le 200000$,$1\le a_i,b_i,c_i,d_i\le 10^8$。 保证 $1\le x_i\le n_t$,$1\le y_i\le n_{t+1}$,且对于相同的 $t$,$(x_i,y_i)$ 互不相同。题目描述
Ivan wants to have a good dinner. A good dinner should consist of a first course, a second course, a drink, and a dessert. There are $ n_1 $ different types of first courses Ivan can buy (the $ i $ -th of them costs $ a_i $ coins), $ n_2 $ different types of second courses (the $ i $ -th of them costs $ b_i $ coins), $ n_3 $ different types of drinks (the $ i $ -th of them costs $ c_i $ coins) and $ n_4 $ different types of desserts (the $ i $ -th of them costs $ d_i $ coins). Some dishes don't go well with each other. There are $ m_1 $ pairs of first courses and second courses that don't go well with each other, $ m_2 $ pairs of second courses and drinks, and $ m_3 $ pairs of drinks and desserts that don't go well with each other. Ivan wants to buy exactly one first course, one second course, one drink, and one dessert so that they go well with each other, and the total cost of the dinner is the minimum possible. Help him to find the cheapest dinner option!输入输出格式
输入格式
The first line contains four integers $ n_1 $ , $ n_2 $ , $ n_3 $ and $ n_4 $ ( $ 1 \le n_i \le 150000 $ ) — the number of types of first courses, second courses, drinks and desserts, respectively. Then four lines follow. The first line contains $ n_1 $ integers $ a_1, a_2, \dots, a_{n_1} $ ( $ 1 \le a_i \le 10^8 $ ), where $ a_i $ is the cost of the $ i $ -th type of first course. Three next lines denote the costs of second courses, drinks, and desserts in the same way ( $ 1 \le b_i, c_i, d_i \le 10^8 $ ). The next line contains one integer $ m_1 $ ( $ 0 \le m_1 \le 200000 $ ) — the number of pairs of first and second courses that don't go well with each other. Each of the next $ m_1 $ lines contains two integers $ x_i $ and $ y_i $ ( $ 1 \le x_i \le n_1 $ ; $ 1 \le y_i \le n_2 $ ) denoting that the first course number $ x_i $ doesn't go well with the second course number $ y_i $ . All these pairs are different. The block of pairs of second dishes and drinks that don't go well with each other is given in the same format. The same for pairs of drinks and desserts that don't go well with each other ( $ 0 \le m_2, m_3 \le 200000 $ ).
输出格式
If it's impossible to choose a first course, a second course, a drink, and a dessert so that they go well with each other, print $ -1 $ . Otherwise, print one integer — the minimum total cost of the dinner.
输入输出样例
输入样例 #1
4 3 2 1
1 2 3 4
5 6 7
8 9
10
2
1 2
1 1
2
3 1
3 2
1
1 1
输出样例 #1
26
输入样例 #2
1 1 1 1
1
1
1
1
1
1 1
0
0
输出样例 #2
-1