308397: CF1512D. Corrupted Array
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:30
Solved:0
Description
Corrupted Array
题意翻译
### 题目描述 给定一个正整数$n$和长度为$n+2$的数组$b$,数组$b$是依据如下算法构造的: - 随机生成一个含有 $n$ 个元素的原始数组$a$; - 把数组 $a$ 赋值给数组 $b$,即 $b_i=a_i(1\le i\le n)$; - 数组 $b$ 的第 $n+1$ 个元素为数组 $a$ 的元素和,即 $b_{n+1}=\sum_{i=1}^na_i$; - 数组 $b$ 的第 $n+2$ 个元素是个随机整数 $x(1\le x\le10^9)$; - 打乱 $b$ 数组。 例如,数组 $b=[2,3,7,12,2]$,那么它能够通过如下方式构建: - $a=[2,2,3]$,且$x=12$; - $a=[3,2,7]$,且$x=2$。 给定一个$b$数组,请你求出它对应的$a$数组。 ### 输入格式 第一行一个整数$T(1\le T\le10^4)$表示数据组数。 对于每组数据,第一行有一个整数$n(1\le n\le2\cdot10^5)$。 第二行有$n+2$个整数,即$b$数组的值$(1\le b_i\le10^9)$。 保证所有测试数据的$n$之和不超过$2\cdot10^5$。 ### 输出格式 对于每个测试数据,如果找不到对应的数组$a$,请输出$-1$; 如果能找到,就输出$a$数组。 如果$a$数组有多种可能,输出任意一个即可。题目描述
You are given a number $ n $ and an array $ b_1, b_2, \ldots, b_{n+2} $ , obtained according to the following algorithm: - some array $ a_1, a_2, \ldots, a_n $ was guessed; - array $ a $ was written to array $ b $ , i.e. $ b_i = a_i $ ( $ 1 \le i \le n $ ); - The $ (n+1) $ -th element of the array $ b $ is the sum of the numbers in the array $ a $ , i.e. $ b_{n+1} = a_1+a_2+\ldots+a_n $ ; - The $ (n+2) $ -th element of the array $ b $ was written some number $ x $ ( $ 1 \le x \le 10^9 $ ), i.e. $ b_{n+2} = x $ ; The - array $ b $ was shuffled. For example, the array $ b=[2, 3, 7, 12 ,2] $ it could be obtained in the following ways: - $ a=[2, 2, 3] $ and $ x=12 $ ; - $ a=[3, 2, 7] $ and $ x=2 $ . For the given array $ b $ , find any array $ a $ that could have been guessed initially.输入输出格式
输入格式
The first line contains a single integer $ t $ ( $ 1 \le t \le 10^4 $ ). Then $ t $ test cases follow. The first line of each test case contains a single integer $ n $ ( $ 1 \le n \le 2 \cdot 10^5 $ ). The second row of each test case contains $ n+2 $ integers $ b_1, b_2, \ldots, b_{n+2} $ ( $ 1 \le b_i \le 10^9 $ ). It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 2 \cdot 10^5 $ .
输出格式
For each test case, output: - "-1", if the array $ b $ could not be obtained from any array $ a $ ; - $ n $ integers $ a_1, a_2, \ldots, a_n $ , otherwise. If there are several arrays of $ a $ , you can output any.
输入输出样例
输入样例 #1
4
3
2 3 7 12 2
4
9 1 7 1 6 5
5
18 2 2 3 2 9 2
3
2 6 9 2 1
输出样例 #1
2 3 7
-1
2 2 2 3 9
1 2 6