308480: CF1527D. MEX Tree

Memory Limit:256 MB Time Limit:1 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

MEX Tree

题意翻译

**本题有多组测试数据**。 给出一棵 $n$ 个点的树,点从 $0$ 到 $n - 1$ 编号。定义一条路径的权值是路径上所有点编号的 $\operatorname{mex}$。对于每个 $0\le i\le n$ 求出 $\operatorname{mex}$ 为 $i$ 的路径有几条。注意,这里统计的路径需要包括至少一条边。 一个集合的 $\operatorname{mex}$ 定义为最小的不在集合中的非负整数。

题目描述

You are given a tree with $ n $ nodes, numerated from $ 0 $ to $ n-1 $ . For each $ k $ between $ 0 $ and $ n $ , inclusive, you have to count the number of unordered pairs $ (u,v) $ , $ u \neq v $ , such that the MEX of all the node labels in the shortest path from $ u $ to $ v $ (including end points) is $ k $ . The MEX of a sequence of integers is the smallest non-negative integer that does not belong to the sequence.

输入输出格式

输入格式


The first line contains a single integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases. The first line of each test case contains a single integer $ n $ ( $ 2 \le n \le 2 \cdot 10^{5} $ ). The next $ n-1 $ lines of each test case describe the tree that has to be constructed. These lines contain two integers $ u $ and $ v $ ( $ 0 \le u,v \le n-1 $ ) denoting an edge between $ u $ and $ v $ ( $ u \neq v $ ). It is guaranteed that the given edges form a tree. It is also guaranteed that the sum of $ n $ for all test cases does not exceed $ 2 \cdot 10^{5} $ .

输出格式


For each test case, print $ n+1 $ integers: the number of paths in the tree, such that the MEX of all the node labels in that path is $ k $ for each $ k $ from $ 0 $ to $ n $ .

输入输出样例

输入样例 #1

2
4
0 1
0 2
2 3
2
1 0

输出样例 #1

1 2 1 1 1 
0 0 1

说明

1. In example case $ 1 $ , ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1527D/e5c8025fcfbd1c007ce3cb8c715c969bfaa44c0d.png) - For $ k = 0 $ , there is $ 1 $ path that is from $ 2 $ to $ 3 $ as $ MEX([2, 3]) = 0 $ . - For $ k = 1 $ , there are $ 2 $ paths that is from $ 0 $ to $ 2 $ as $ MEX([0, 2]) = 1 $ and $ 0 $ to $ 3 $ as $ MEX([0, 2, 3]) = 1 $ . - For $ k = 2 $ , there is $ 1 $ path that is from $ 0 $ to $ 1 $ as $ MEX([0, 1]) = 2 $ . - For $ k = 3 $ , there is $ 1 $ path that is from $ 1 $ to $ 2 $ as $ MEX([1, 0, 2]) = 3 $ - For $ k = 4 $ , there is $ 1 $ path that is from $ 1 $ to $ 3 $ as $ MEX([1, 0, 2, 3]) = 4 $ . 2. In example case $ 2 $ , ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1527D/218a42ab66b42084b0180ef8d681f370aa875732.png) - For $ k = 0 $ , there are no such paths. - For $ k = 1 $ , there are no such paths. - For $ k = 2 $ , there is $ 1 $ path that is from $ 0 $ to $ 1 $ as $ MEX([0, 1]) = 2 $ .

Input

题意翻译

**本题有多组测试数据**。 给出一棵 $n$ 个点的树,点从 $0$ 到 $n - 1$ 编号。定义一条路径的权值是路径上所有点编号的 $\operatorname{mex}$。对于每个 $0\le i\le n$ 求出 $\operatorname{mex}$ 为 $i$ 的路径有几条。注意,这里统计的路径需要包括至少一条边。 一个集合的 $\operatorname{mex}$ 定义为最小的不在集合中的非负整数。

加入题单

上一题 下一题 算法标签: