308590: CF1543E. The Final Pursuit
Memory Limit:256 MB
Time Limit:3 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
The Final Pursuit
题意翻译
* 定义一张图为 $n$ 维**简单超立方体**。 * 这张图有 $2^n$ 个点和 $n2^{n-1}$ 条边,点编号从 $0$ 到 $2^n-1$。 * 对于任意两个异或起来为 $2$ 的整数次幂的点之间有一条边。 * 定义一张图为 $n$ 维**排列超立方体**。 * 这张图也有 $2^n$ 个点和 $n2^{n-1}$ 条边,点编号从 $0$ 到 $2^n-1$。 * 对于一个排列超立方体,存在一个 $0\sim n-1$ 的排列 $p_i$。 * 对于原图中一条连接 $(u,v)$ 的边,在新图中也存在一条连接 $(p_u,p_v)$ 的边。 * 给定一个 $n$ 维**排列超立方体**,你需要完成以下两个任务: * 找到一个合法的排列 $p_i$。 * 给每个点标号 $0\sim n-1$,使得对于任意一个点,其连接的所有点的颜色也构成一个 $0\sim n-1$ 的排列。 * 对于第二个任务,可能存在无解的情况,请输出 $-1$。 * 有多组测试数据,$1\leq n\leq 16,\sum2^n\leq 65536$。题目描述
Finally, you have defeated Razor and now, you are the Most Wanted street racer. Sergeant Cross has sent the full police force after you in a deadly pursuit. Fortunately, you have found a hiding spot but you fear that Cross and his force will eventually find you. To increase your chances of survival, you want to tune and repaint your BMW M3 GTR. The car can be imagined as a permuted $ n $ -dimensional hypercube. A simple $ n $ -dimensional hypercube is an undirected unweighted graph built recursively as follows: - Take two simple $ (n-1) $ -dimensional hypercubes one having vertices numbered from $ 0 $ to $ 2^{n-1}-1 $ and the other having vertices numbered from $ 2^{n-1} $ to $ 2^{n}-1 $ . A simple $ 0 $ -dimensional Hypercube is just a single vertex. - Add an edge between the vertices $ i $ and $ i+2^{n-1} $ for each $ 0\leq i < 2^{n-1} $ . A permuted $ n $ -dimensional hypercube is formed by permuting the vertex numbers of a simple $ n $ -dimensional hypercube in any arbitrary manner. Examples of a simple and permuted $ 3 $ -dimensional hypercubes are given below: ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1543E/aea140f70de8ed5134f37d1a4e3eeede0b9ad62a.png)Note that a permuted $ n $ -dimensional hypercube has the following properties: - There are exactly $ 2^n $ vertices. - There are exactly $ n\cdot 2^{n-1} $ edges. - Each vertex is connected to exactly $ n $ other vertices. - There are no self-loops or duplicate edges. Let's denote the permutation used to generate the permuted $ n $ -dimensional hypercube, representing your car, from a simple $ n $ -dimensional hypercube by $ P $ . Before messing up the functionalities of the car, you want to find this permutation so that you can restore the car if anything goes wrong. But the job isn't done yet. You have $ n $ different colours numbered from $ 0 $ to $ n-1 $ . You want to colour the vertices of this permuted $ n $ -dimensional hypercube in such a way that for each and every vertex $ u $ satisfying $ 0\leq u < 2^n $ and for each and every colour $ c $ satisfying $ 0\leq c < n $ , there is at least one vertex $ v $ adjacent to $ u $ having a colour $ c $ . In other words, from each and every vertex, it must be possible to reach a vertex of any colour by just moving to an adjacent vertex. Given the permuted $ n $ -dimensional hypercube, find any valid permutation $ P $ and colouring.输入输出格式
输入格式
The first line of input contains a single integer $ t $ ( $ 1\leq t\leq 4096 $ ) — the number of test cases. For each test case, the first line contains a single integer $ n $ ( $ 1\leq n\leq 16 $ ). Each of the next $ n\cdot 2^{n-1} $ lines contain two integers $ u $ and $ v $ ( $ 0\leq u, v < 2^n $ ) denoting that there is an edge between the vertices numbered $ u $ and $ v $ . It is guaranteed that the graph described in the input is a permuted $ n $ -dimensional hypercube. Additionally, it is guaranteed that the sum of $ 2^n $ over all test cases does not exceed $ 2^{16}=65\,536 $ .
输出格式
For each test case, print two lines. In the first line, output any permutation $ P $ of length $ 2^n $ that can be used to transform a simple $ n $ -dimensional hypercube to the permuted $ n $ -dimensional hypercube given in the input. Two permuted hypercubes are considered the same if they have the same set of edges. If there are multiple answers, output any of them. In the second line, print the colouring. If there is no way to colour the vertices satisfying the conditions, output $ -1 $ . Otherwise, output a single line containing $ 2^n $ space separated integers. The $ i $ -th integer must be the colour of the vertex numbered $ (i-1) $ in the permuted $ n $ -dimensional hypercube. If there are multiple answers, output any of them.
输入输出样例
输入样例 #1
3
1
0 1
2
0 1
1 2
2 3
3 0
3
0 1
0 5
0 7
1 2
1 4
2 5
2 6
3 5
3 6
3 7
4 6
4 7
输出样例 #1
0 1
0 0
0 1 3 2
0 0 1 1
5 3 0 7 2 6 1 4
-1