308680: CF1556F. Sports Betting
Memory Limit:256 MB
Time Limit:4 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Sports Betting
题意翻译
有 $n\ (n\le14)$ 个人,两两之间会打比赛。每人有一个实力值 $a_i$,在 $i$ 与 $j$ 的比赛中, $i$ 有 $\frac {a_i}{a_i+a_j}$ 的概率获胜,其他情况则是 $j$ 获胜。$i$ 在与 $j$ 的比赛中获胜则称 $i$ 打败了 $j$。若 $i$ 打败了 $j$,$j$ 打败了 $k$,则认为 $i$ 也打败了 $k$。若 $i$ 打败了除了他自己以外的所有人,则称 $i$ 是一个 Winner(是否打败了自己不要求),注意 Winner 可能有多个。现在你需要求出 Winner 的期望数量,对 $1e9+7$ 取模。题目描述
![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1556F/019d3452101b513cd6bdfca73d0ad9bf76ce0ea0.png)William is not only interested in trading but also in betting on sports matches. $ n $ teams participate in each match. Each team is characterized by strength $ a_i $ . Each two teams $ i < j $ play with each other exactly once. Team $ i $ wins with probability $ \frac{a_i}{a_i + a_j} $ and team $ j $ wins with probability $ \frac{a_j}{a_i + a_j} $ . The team is called a winner if it directly or indirectly defeated all other teams. Team $ a $ defeated (directly or indirectly) team $ b $ if there is a sequence of teams $ c_1 $ , $ c_2 $ , ... $ c_k $ such that $ c_1 = a $ , $ c_k = b $ and team $ c_i $ defeated team $ c_{i + 1} $ for all $ i $ from $ 1 $ to $ k - 1 $ . Note that it is possible that team $ a $ defeated team $ b $ and in the same time team $ b $ defeated team $ a $ . William wants you to find the expected value of the number of winners.输入输出格式
输入格式
The first line contains a single integer $ n $ ( $ 1 \leq n \leq 14 $ ), which is the total number of teams participating in a match. The second line contains $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ 1 \leq a_i \leq 10^6 $ ) — the strengths of teams participating in a match.
输出格式
Output a single integer — the expected value of the number of winners of the tournament modulo $ 10^9 + 7 $ . Formally, let $ M = 10^9+7 $ . It can be demonstrated that the answer can be presented as a irreducible fraction $ \frac{p}{q} $ , where $ p $ and $ q $ are integers and $ q \not \equiv 0 \pmod{M} $ . Output a single integer equal to $ p \cdot q^{-1} \bmod M $ . In other words, output an integer $ x $ such that $ 0 \le x < M $ and $ x \cdot q \equiv p \pmod{M} $ .
输入输出样例
输入样例 #1
2
1 2
输出样例 #1
1
输入样例 #2
5
1 5 2 11 14
输出样例 #2
642377629