308680: CF1556F. Sports Betting

Memory Limit:256 MB Time Limit:4 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Sports Betting

题意翻译

有 $n\ (n\le14)$ 个人,两两之间会打比赛。每人有一个实力值 $a_i$,在 $i$ 与 $j$ 的比赛中, $i$ 有 $\frac {a_i}{a_i+a_j}$ 的概率获胜,其他情况则是 $j$ 获胜。$i$ 在与 $j$ 的比赛中获胜则称 $i$ 打败了 $j$。若 $i$ 打败了 $j$,$j$ 打败了 $k$,则认为 $i$ 也打败了 $k$。若 $i$ 打败了除了他自己以外的所有人,则称 $i$ 是一个 Winner(是否打败了自己不要求),注意 Winner 可能有多个。现在你需要求出 Winner 的期望数量,对 $1e9+7$ 取模。

题目描述

![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1556F/019d3452101b513cd6bdfca73d0ad9bf76ce0ea0.png)William is not only interested in trading but also in betting on sports matches. $ n $ teams participate in each match. Each team is characterized by strength $ a_i $ . Each two teams $ i < j $ play with each other exactly once. Team $ i $ wins with probability $ \frac{a_i}{a_i + a_j} $ and team $ j $ wins with probability $ \frac{a_j}{a_i + a_j} $ . The team is called a winner if it directly or indirectly defeated all other teams. Team $ a $ defeated (directly or indirectly) team $ b $ if there is a sequence of teams $ c_1 $ , $ c_2 $ , ... $ c_k $ such that $ c_1 = a $ , $ c_k = b $ and team $ c_i $ defeated team $ c_{i + 1} $ for all $ i $ from $ 1 $ to $ k - 1 $ . Note that it is possible that team $ a $ defeated team $ b $ and in the same time team $ b $ defeated team $ a $ . William wants you to find the expected value of the number of winners.

输入输出格式

输入格式


The first line contains a single integer $ n $ ( $ 1 \leq n \leq 14 $ ), which is the total number of teams participating in a match. The second line contains $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ 1 \leq a_i \leq 10^6 $ ) — the strengths of teams participating in a match.

输出格式


Output a single integer — the expected value of the number of winners of the tournament modulo $ 10^9 + 7 $ . Formally, let $ M = 10^9+7 $ . It can be demonstrated that the answer can be presented as a irreducible fraction $ \frac{p}{q} $ , where $ p $ and $ q $ are integers and $ q \not \equiv 0 \pmod{M} $ . Output a single integer equal to $ p \cdot q^{-1} \bmod M $ . In other words, output an integer $ x $ such that $ 0 \le x < M $ and $ x \cdot q \equiv p \pmod{M} $ .

输入输出样例

输入样例 #1

2
1 2

输出样例 #1

1

输入样例 #2

5
1 5 2 11 14

输出样例 #2

642377629

说明

To better understand in which situation several winners are possible let's examine the second test: One possible result of the tournament is as follows ( $ a \rightarrow b $ means that $ a $ defeated $ b $ ): - $ 1 \rightarrow 2 $ - $ 2 \rightarrow 3 $ - $ 3 \rightarrow 1 $ - $ 1 \rightarrow 4 $ - $ 1 \rightarrow 5 $ - $ 2 \rightarrow 4 $ - $ 2 \rightarrow 5 $ - $ 3 \rightarrow 4 $ - $ 3 \rightarrow 5 $ - $ 4 \rightarrow 5 $ Or more clearly in the picture: ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1556F/6c25791d22e17c072eecc03de22b6a045c024954.png)In this case every team from the set $ \{ 1, 2, 3 \} $ directly or indirectly defeated everyone. I.e.: - $ 1 $ st defeated everyone because they can get to everyone else in the following way $ 1 \rightarrow 2 $ , $ 1 \rightarrow 2 \rightarrow 3 $ , $ 1 \rightarrow 4 $ , $ 1 \rightarrow 5 $ . - $ 2 $ nd defeated everyone because they can get to everyone else in the following way $ 2 \rightarrow 3 $ , $ 2 \rightarrow 3 \rightarrow 1 $ , $ 2 \rightarrow 4 $ , $ 2 \rightarrow 5 $ . - $ 3 $ rd defeated everyone because they can get to everyone else in the following way $ 3 \rightarrow 1 $ , $ 3 \rightarrow 1 \rightarrow 2 $ , $ 3 \rightarrow 4 $ , $ 3 \rightarrow 5 $ . Therefore the total number of winners is $ 3 $ .

Input

题意翻译

有 $n\ (n\le14)$ 个人,两两之间会打比赛。每人有一个实力值 $a_i$,在 $i$ 与 $j$ 的比赛中, $i$ 有 $\frac {a_i}{a_i+a_j}$ 的概率获胜,其他情况则是 $j$ 获胜。$i$ 在与 $j$ 的比赛中获胜则称 $i$ 打败了 $j$。若 $i$ 打败了 $j$,$j$ 打败了 $k$,则认为 $i$ 也打败了 $k$。若 $i$ 打败了除了他自己以外的所有人,则称 $i$ 是一个 Winner(是否打败了自己不要求),注意 Winner 可能有多个。现在你需要求出 Winner 的期望数量,对 $1e9+7$ 取模。

加入题单

上一题 下一题 算法标签: