309008: CF1611C. Polycarp Recovers the Permutation

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Polycarp Recovers the Permutation

题意翻译

有一个元素个数为 $n$ 的数组 $p$,我们每次执行以下操作: 取 $p$ 最左边和最右边的数中较小的一个,如果选的是最左边,就加入新数组 $a$ 的左边,否则加入 $a$ 的右边。 现在给出 $a$,求 $p$。如果无解,输出 `-1`;如果多组解,输出任意一组即可。

题目描述

Polycarp wrote on a whiteboard an array $ p $ of length $ n $ , which is a permutation of numbers from $ 1 $ to $ n $ . In other words, in $ p $ each number from $ 1 $ to $ n $ occurs exactly once. He also prepared a resulting array $ a $ , which is initially empty (that is, it has a length of $ 0 $ ). After that, he did exactly $ n $ steps. Each step looked like this: - Look at the leftmost and rightmost elements of $ p $ , and pick the smaller of the two. - If you picked the leftmost element of $ p $ , append it to the left of $ a $ ; otherwise, if you picked the rightmost element of $ p $ , append it to the right of $ a $ . - The picked element is erased from $ p $ . Note that on the last step, $ p $ has a length of $ 1 $ and its minimum element is both leftmost and rightmost. In this case, Polycarp can choose what role the minimum element plays. In other words, this element can be added to $ a $ both on the left and on the right (at the discretion of Polycarp). Let's look at an example. Let $ n=4 $ , $ p=[3, 1, 4, 2] $ . Initially $ a=[] $ . Then: - During the first step, the minimum is on the right (with a value of $ 2 $ ), so after this step, $ p=[3,1,4] $ and $ a=[2] $ (he added the value $ 2 $ to the right). - During the second step, the minimum is on the left (with a value of $ 3 $ ), so after this step, $ p=[1,4] $ and $ a=[3,2] $ (he added the value $ 3 $ to the left). - During the third step, the minimum is on the left (with a value of $ 1 $ ), so after this step, $ p=[4] $ and $ a=[1,3,2] $ (he added the value $ 1 $ to the left). - During the fourth step, the minimum is both left and right (this value is $ 4 $ ). Let's say Polycarp chose the right option. After this step, $ p=[] $ and $ a=[1,3,2,4] $ (he added the value $ 4 $ to the right). Thus, a possible value of $ a $ after $ n $ steps could be $ a=[1,3,2,4] $ . You are given the final value of the resulting array $ a $ . Find any possible initial value for $ p $ that can result the given $ a $ , or determine that there is no solution.

输入输出格式

输入格式


The first line of the input contains an integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases in the test. Each test case consists of two lines. The first of them contains an integer $ n $ ( $ 1 \le n \le 2\cdot10^5 $ ) — the length of the array $ a $ . The second line contains $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ 1 \le a_i \le n $ ) — the elements of the array $ a $ . All elements of the $ a $ array are distinct numbers. It is guaranteed that the sum of the values $ n $ over all test cases in the test does not exceed $ 2\cdot10^5 $ .

输出格式


Print $ t $ lines, each of the lines must contain the answer to the corresponding set of input data: numbers $ p_1, p_2, \dots, p_n $ — any of the possible initial values of the array $ p $ , which will lead to the given array $ a $ . All elements of $ p $ are distinct integers from $ 1 $ to $ n $ . Thus, if there are several solutions, print any. If there is no solution, then print -1 on the line.

输入输出样例

输入样例 #1

4
4
1 3 2 4
1
1
5
1 3 5 4 2
3
3 2 1

输出样例 #1

3 1 4 2
1
-1
2 3 1

说明

The first test case in the example is clarified in the main section of the problem statement. There may be other correct answers for this test set. In the second test case, $ n=1 $ . Thus, there is only one permutation that can be the answer: $ p=[1] $ . Indeed, this is the answer to this test case. In the third test case of the example, no matter what permutation you take as $ p $ , after applying the $ n $ steps, the result will differ from $ a=[1, 3, 5, 4, 2] $ .

Input

题意翻译

有一个元素个数为 $n$ 的数组 $p$,我们每次执行以下操作: 取 $p$ 最左边和最右边的数中较小的一个,如果选的是最左边,就加入新数组 $a$ 的左边,否则加入 $a$ 的右边。 现在给出 $a$,求 $p$。如果无解,输出 `-1`;如果多组解,输出任意一组即可。

加入题单

上一题 下一题 算法标签: