309027: CF1614A. Divan and a Store
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Divan and a Store
题意翻译
给定一个长为 $n$ 的数组 $a$,从中选出若干个在 $[l,r]$ 区间的数,使得总和不大于 $k$。求最多个数。 ### 输入格式 第一行一个 $t$,表示数据组数。 每一组数据中: 第一行有四个整数 $ n $ , $ l $ , $ r $ , $ k $ ( $ 1 \le n \le 100 $ , $ 1 \le l \le r \le 10^9 $ , $ 1 \le k \le 10^9 $ )。 第二行有 $n$ 个整数,表示数组 $a$。 ### 输出格式 对于每一组数据输出一行一个整数,表示最大个数。题目描述
Businessman Divan loves chocolate! Today he came to a store to buy some chocolate. Like all businessmen, Divan knows the value of money, so he will not buy too expensive chocolate. At the same time, too cheap chocolate tastes bad, so he will not buy it as well. The store he came to has $ n $ different chocolate bars, and the price of the $ i $ -th chocolate bar is $ a_i $ dollars. Divan considers a chocolate bar too expensive if it costs strictly more than $ r $ dollars. Similarly, he considers a bar of chocolate to be too cheap if it costs strictly less than $ l $ dollars. Divan will not buy too cheap or too expensive bars. Divan is not going to spend all his money on chocolate bars, so he will spend at most $ k $ dollars on chocolates. Please determine the maximum number of chocolate bars Divan can buy.输入输出格式
输入格式
Each test contains multiple test cases. The first line contains the number of test cases $ t $ ( $ 1 \le t \le 100 $ ). Description of the test cases follows. The description of each test case consists of two lines. The first line contains integers $ n $ , $ l $ , $ r $ , $ k $ ( $ 1 \le n \le 100 $ , $ 1 \le l \le r \le 10^9 $ , $ 1 \le k \le 10^9 $ ) — the lowest acceptable price of a chocolate, the highest acceptable price of a chocolate and Divan's total budget, respectively. The second line contains a sequence $ a_1, a_2, \ldots, a_n $ ( $ 1 \le a_i \le 10^9 $ ) integers — the prices of chocolate bars in the store.
输出格式
For each test case print a single integer — the maximum number of chocolate bars Divan can buy.
输入输出样例
输入样例 #1
8
3 1 100 100
50 100 50
6 3 5 10
1 2 3 4 5 6
6 3 5 21
1 2 3 4 5 6
10 50 69 100
20 30 40 77 1 1 12 4 70 10000
3 50 80 30
20 60 70
10 2 7 100
2 2 2 2 2 7 7 7 7 7
4 1000000000 1000000000 1000000000
1000000000 1000000000 1000000000 1000000000
1 1 1 1
1
输出样例 #1
2
2
3
0
0
10
1
1