309051: CF1617C. Paprika and Permutation

Memory Limit:256 MB Time Limit:1 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Paprika and Permutation

题意翻译

有一个长度为 $n$ 的数组 $a_1,a_2,\dots,a_n$。每次操作你可以选择数组中的一个元素 $a_i$ 和 $x$,然后将 $a_i$ 替换为 $a_i\bmod x$。 求至少要多少次操作才能够将数组 $a$ 变为一个 $1$ 到 $n$ 的排列。如果无法实现,输出 $-1$。 数据范围: - $t$ 组数据,$1\leqslant t\leqslant 10^4$。 - $1\leqslant n\leqslant 10^5$,$\sum n\leqslant 2\times 10^5$。 - $1\leqslant a_i\leqslant 10^9$。 Translated by Eason_AC 2021.12.17

题目描述

Paprika loves permutations. She has an array $ a_1, a_2, \dots, a_n $ . She wants to make the array a permutation of integers $ 1 $ to $ n $ . In order to achieve this goal, she can perform operations on the array. In each operation she can choose two integers $ i $ ( $ 1 \le i \le n $ ) and $ x $ ( $ x > 0 $ ), then perform $ a_i := a_i \bmod x $ (that is, replace $ a_i $ by the remainder of $ a_i $ divided by $ x $ ). In different operations, the chosen $ i $ and $ x $ can be different. Determine the minimum number of operations needed to make the array a permutation of integers $ 1 $ to $ n $ . If it is impossible, output $ -1 $ . A permutation is an array consisting of $ n $ distinct integers from $ 1 $ to $ n $ in arbitrary order. For example, $ [2,3,1,5,4] $ is a permutation, but $ [1,2,2] $ is not a permutation ( $ 2 $ appears twice in the array) and $ [1,3,4] $ is also not a permutation ( $ n=3 $ but there is $ 4 $ in the array).

输入输出格式

输入格式


Each test contains multiple test cases. The first line contains a single integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases. Description of the test cases follows. The first line of each test case contains an integer $ n $ ( $ 1 \le n \le 10^5 $ ). The second line of each test case contains $ n $ integers $ a_1, a_2, \dots, a_n $ . ( $ 1 \le a_i \le 10^9 $ ). It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 2 \cdot 10^5 $ .

输出格式


For each test case, output the minimum number of operations needed to make the array a permutation of integers $ 1 $ to $ n $ , or $ -1 $ if it is impossible.

输入输出样例

输入样例 #1

4
2
1 7
3
1 5 4
4
12345678 87654321 20211218 23571113
9
1 2 3 4 18 19 5 6 7

输出样例 #1

1
-1
4
2

说明

For the first test, the only possible sequence of operations which minimizes the number of operations is: - Choose $ i=2 $ , $ x=5 $ . Perform $ a_2 := a_2 \bmod 5 = 2 $ . For the second test, it is impossible to obtain a permutation of integers from $ 1 $ to $ n $ .

Input

题意翻译

有一个长度为 $n$ 的数组 $a_1,a_2,\dots,a_n$。每次操作你可以选择数组中的一个元素 $a_i$ 和 $x$,然后将 $a_i$ 替换为 $a_i\bmod x$。 求至少要多少次操作才能够将数组 $a$ 变为一个 $1$ 到 $n$ 的排列。如果无法实现,输出 $-1$。 数据范围: - $t$ 组数据,$1\leqslant t\leqslant 10^4$。 - $1\leqslant n\leqslant 10^5$,$\sum n\leqslant 2\times 10^5$。 - $1\leqslant a_i\leqslant 10^9$。 Translated by Eason_AC 2021.12.17

加入题单

上一题 下一题 算法标签: