309058: CF1618D. Array and Operations

Memory Limit:512 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Array and Operations

题意翻译

给定 $n$ 个数和一个数 $k$,要求对这 $n$ 个数进行 $k$ 次操作,每次操作取出两个数 $a_i,a_j (i\neq j)$,并将 $\lfloor \frac{a_i}{a_j} \rfloor$ 加进得分中,其中 $\lfloor \frac{x}{y} \rfloor$ 为不超过 $\frac{x}{y}$ 的最大整数。 $k$ 次操作后,将剩下的 $n-2k$ 个数直接加入到得分中。 求最终得分的最小值。

题目描述

You are given an array $ a $ of $ n $ integers, and another integer $ k $ such that $ 2k \le n $ . You have to perform exactly $ k $ operations with this array. In one operation, you have to choose two elements of the array (let them be $ a_i $ and $ a_j $ ; they can be equal or different, but their positions in the array must not be the same), remove them from the array, and add $ \lfloor \frac{a_i}{a_j} \rfloor $ to your score, where $ \lfloor \frac{x}{y} \rfloor $ is the maximum integer not exceeding $ \frac{x}{y} $ . Initially, your score is $ 0 $ . After you perform exactly $ k $ operations, you add all the remaining elements of the array to the score. Calculate the minimum possible score you can get.

输入输出格式

输入格式


The first line of the input contains one integer $ t $ ( $ 1 \le t \le 500 $ ) — the number of test cases. Each test case consists of two lines. The first line contains two integers $ n $ and $ k $ ( $ 1 \le n \le 100 $ ; $ 0 \le k \le \lfloor \frac{n}{2} \rfloor $ ). The second line contains $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ 1 \le a_i \le 2 \cdot 10^5 $ ).

输出格式


Print one integer — the minimum possible score you can get.

输入输出样例

输入样例 #1

5
7 3
1 1 1 2 1 3 1
5 1
5 5 5 5 5
4 2
1 3 3 7
2 0
4 2
9 2
1 10 10 1 10 2 7 10 3

输出样例 #1

2
16
0
6
16

说明

Let's consider the example test. In the first test case, one way to obtain a score of $ 2 $ is the following one: 1. choose $ a_7 = 1 $ and $ a_4 = 2 $ for the operation; the score becomes $ 0 + \lfloor \frac{1}{2} \rfloor = 0 $ , the array becomes $ [1, 1, 1, 1, 3] $ ; 2. choose $ a_1 = 1 $ and $ a_5 = 3 $ for the operation; the score becomes $ 0 + \lfloor \frac{1}{3} \rfloor = 0 $ , the array becomes $ [1, 1, 1] $ ; 3. choose $ a_1 = 1 $ and $ a_2 = 1 $ for the operation; the score becomes $ 0 + \lfloor \frac{1}{1} \rfloor = 1 $ , the array becomes $ [1] $ ; 4. add the remaining element $ 1 $ to the score, so the resulting score is $ 2 $ . In the second test case, no matter which operations you choose, the resulting score is $ 16 $ . In the third test case, one way to obtain a score of $ 0 $ is the following one: 1. choose $ a_1 = 1 $ and $ a_2 = 3 $ for the operation; the score becomes $ 0 + \lfloor \frac{1}{3} \rfloor = 0 $ , the array becomes $ [3, 7] $ ; 2. choose $ a_1 = 3 $ and $ a_2 = 7 $ for the operation; the score becomes $ 0 + \lfloor \frac{3}{7} \rfloor = 0 $ , the array becomes empty; 3. the array is empty, so the score doesn't change anymore. In the fourth test case, no operations can be performed, so the score is the sum of the elements of the array: $ 4 + 2 = 6 $ .

Input

题意翻译

给定 $n$ 个数和一个数 $k$,要求对这 $n$ 个数进行 $k$ 次操作,每次操作取出两个数 $a_i,a_j (i\neq j)$,并将 $\lfloor \frac{a_i}{a_j} \rfloor$ 加进得分中,其中 $\lfloor \frac{x}{y} \rfloor$ 为不超过 $\frac{x}{y}$ 的最大整数。 $k$ 次操作后,将剩下的 $n-2k$ 个数直接加入到得分中。 求最终得分的最小值。

加入题单

上一题 下一题 算法标签: