309076: CF1620G. Subsequences Galore
Memory Limit:1024 MB
Time Limit:10 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Subsequences Galore
题意翻译
给定一个字符串序列 $[t_1,t_2,\cdots ,t_m]$ ,定义 $f([t_1,t_2,\cdots,t_m])$ 为至少是其中一个字符串 $t_i$ 的子序列的字符串个数,其中 $f([])=0$ 。 给定哟个字符串序列 $[s_1,s_2,\cdots ,s_m]$ 对每一个子集 $[s_{i_1}, s_{i_2}, \dots, s_{i_k}]$ 求出 $f({[s_{i_1}, s_{i_2}, \dots, s_{i_k}]})$ 对$998,244,353$ 取模后的值。 输出 $f({[s_{i_1}, s_{i_2}, \dots, s_{i_k}]})\times k\times (i_1+i_2+\cdots+i_k)$ 的异或和(不取模)。 注意每个字符串 $s_i$ 中的字母都是排好序的。题目描述
For a sequence of strings $ [t_1, t_2, \dots, t_m] $ , let's define the function $ f([t_1, t_2, \dots, t_m]) $ as the number of different strings (including the empty string) that are subsequences of at least one string $ t_i $ . $ f([]) = 0 $ (i. e. the number of such strings for an empty sequence is $ 0 $ ). You are given a sequence of strings $ [s_1, s_2, \dots, s_n] $ . Every string in this sequence consists of lowercase Latin letters and is sorted (i. e., each string begins with several (maybe zero) characters a, then several (maybe zero) characters b, ..., ends with several (maybe zero) characters z). For each of $ 2^n $ subsequences of $ [s_1, s_2, \dots, s_n] $ , calculate the value of the function $ f $ modulo $ 998244353 $ .输入输出格式
输入格式
The first line contains one integer $ n $ ( $ 1 \le n \le 23 $ ) — the number of strings. Then $ n $ lines follow. The $ i $ -th line contains the string $ s_i $ ( $ 1 \le |s_i| \le 2 \cdot 10^4 $ ), consisting of lowercase Latin letters. Each string $ s_i $ is sorted.
输出格式
Since printing up to $ 2^{23} $ integers would be really slow, you should do the following: For each of the $ 2^n $ subsequences (which we denote as $ [s_{i_1}, s_{i_2}, \dots, s_{i_k}] $ ), calculate $ f([s_{i_1}, s_{i_2}, \dots, s_{i_k}]) $ , take it modulo $ 998244353 $ , then multiply it by $ k \cdot (i_1 + i_2 + \dots + i_k) $ . Print the XOR of all $ 2^n $ integers you get. The indices $ i_1, i_2, \dots, i_k $ in the description of each subsequences are $ 1 $ -indexed (i. e. are from $ 1 $ to $ n $ ).
输入输出样例
输入样例 #1
3
a
b
c
输出样例 #1
92
输入样例 #2
2
aa
a
输出样例 #2
21
输入样例 #3
2
a
a
输出样例 #3
10
输入样例 #4
2
abcd
aabb
输出样例 #4
124
输入样例 #5
3
ddd
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaabbbbbbbbbbbcccccccccccciiiiiiiiiiiiiiiiiiiiiiooooooooooqqqqqqqqqqqqqqqqqqvvvvvzzzzzzzzzzzz
输出样例 #5
15706243380