309175: CF1637D. Yet Another Minimization Problem

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Yet Another Minimization Problem

题意翻译

定义某数组 $x$ 的权值为 $$\sum\limits_{i=1}^n\sum\limits_{j=i+1}^n(x_i+x_j)^2$$ 现在,给定两个长度为 $n$ 的数组 $a,b$。你可以执行若干次操作,每次操作选择一个下标 $i$,并交换 $a_i,b_i$。求在进行操作之后两个数组的权值之和最小能够达到多少。 数据范围: - $t$ 组数据,$1\leqslant t\leqslant 40$。 - $1\leqslant n,\sum n\leqslant 100$。 - $1\leqslant a_i,b_i\leqslant 100$。 Translated by Eason_AC

题目描述

You are given two arrays $ a $ and $ b $ , both of length $ n $ . You can perform the following operation any number of times (possibly zero): select an index $ i $ ( $ 1 \leq i \leq n $ ) and swap $ a_i $ and $ b_i $ . Let's define the cost of the array $ a $ as $ \sum_{i=1}^{n} \sum_{j=i + 1}^{n} (a_i + a_j)^2 $ . Similarly, the cost of the array $ b $ is $ \sum_{i=1}^{n} \sum_{j=i + 1}^{n} (b_i + b_j)^2 $ . Your task is to minimize the total cost of two arrays.

输入输出格式

输入格式


Each test case consists of several test cases. The first line contains a single integer $ t $ ( $ 1 \leq t \leq 40 $ ) — the number of test cases. The following is a description of the input data sets. The first line of each test case contains an integer $ n $ ( $ 1 \leq n \leq 100 $ ) — the length of both arrays. The second line of each test case contains $ n $ integers $ a_1, a_2, \ldots, a_n $ ( $ 1 \leq a_i \leq 100 $ ) — elements of the first array. The third line of each test case contains $ n $ integers $ b_1, b_2, \ldots, b_n $ ( $ 1 \leq b_i \leq 100 $ ) — elements of the second array. It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 100 $ .

输出格式


For each test case, print the minimum possible total cost.

输入输出样例

输入样例 #1

3
1
3
6
4
3 6 6 6
2 7 4 1
4
6 7 2 4
2 5 3 5

输出样例 #1

0
987
914

说明

In the second test case, in one of the optimal answers after all operations $ a = [2, 6, 4, 6] $ , $ b = [3, 7, 6, 1] $ . The cost of the array $ a $ equals to $ (2 + 6)^2 + (2 + 4)^2 + (2 + 6)^2 + (6 + 4)^2 + (6 + 6)^2 + (4 + 6)^2 = 508 $ . The cost of the array $ b $ equals to $ (3 + 7)^2 + (3 + 6)^2 + (3 + 1)^2 + (7 + 6)^2 + (7 + 1)^2 + (6 + 1)^2 = 479 $ . The total cost of two arrays equals to $ 508 + 479 = 987 $ .

Input

题意翻译

定义某数组 $x$ 的权值为 $$\sum\limits_{i=1}^n\sum\limits_{j=i+1}^n(x_i+x_j)^2$$ 现在,给定两个长度为 $n$ 的数组 $a,b$。你可以执行若干次操作,每次操作选择一个下标 $i$,并交换 $a_i,b_i$。求在进行操作之后两个数组的权值之和最小能够达到多少。 数据范围: - $t$ 组数据,$1\leqslant t\leqslant 40$。 - $1\leqslant n,\sum n\leqslant 100$。 - $1\leqslant a_i,b_i\leqslant 100$。 Translated by Eason_AC

加入题单

上一题 下一题 算法标签: