309198: CF1641B. Repetitions Decoding
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Repetitions Decoding
题意翻译
$T$ 组数据,每组数据给你一个长度为 $n$ 的序列,满足 $n \le 500$ 且 $\sum n^2 \le 250000$。 你要完成一个任务:就是把整个序列分成几段。每一段都必须长度为偶数并且前半段和后半段要完全相同。 为了让你完成这个任务,你可以执行这样一个操作:在**当前的**第 $p$ 个数后面加 **两个** $c$。位置 $p$ (合法范围内) 和数值 $c$ 任意。 这个操作次数不能超过 $2 \times n^2$ 次。 对于每组数据,如果无解只需要输出 `-1`。 如果有解,输出方案,格式见下: 第一行你需要输出一个 $q$,表示操作了几次。 接下来 $q$ 行,每行输出两个数 $p,c$ ,表示在**当前序列**的第 $p$ 个数后面添加两个数值为 $c$ 的数。注意,$p$ 应该满足 $0 \le p \le m$,其中 $m$ 是当前序列的长度。 接下来一行你需要输出一个 $d$,表示将整个序列划分成了 $d$ 段。 接下来一行,输出一个长度为 $d$ 的序列 $t_1, t_2, ..., t_d$ ,表示从前向后划分的每一段的长度。 显然需要满足的是 $d, t_i \ge 1$。 设最后序列 $a$ 的长度为 $m = n + 2 \times q$ 。则需满足 $m = \displaystyle \sum_{i=1}^{d} t_i$。 划分的每一段都要满足条件,即对于 $1 \le i \le d$,对应序列上的区间 $[l,r]$ 需满足前半段和后半段完全相同,其中 $l = \displaystyle \sum_{j=1}^{i-1} t_j + 1, r = l + t_i - 1$ 。 可能有多种方案,你只需要输出其中一种。题目描述
Olya has an array of integers $ a_1, a_2, \ldots, a_n $ . She wants to split it into tandem repeats. Since it's rarely possible, before that she wants to perform the following operation several (possibly, zero) number of times: insert a pair of equal numbers into an arbitrary position. Help her! More formally: - A tandem repeat is a sequence $ x $ of even length $ 2k $ such that for each $ 1 \le i \le k $ the condition $ x_i = x_{i + k} $ is satisfied. - An array $ a $ could be split into tandem repeats if you can split it into several parts, each being a subsegment of the array, such that each part is a tandem repeat. - In one operation you can choose an arbitrary letter $ c $ and insert $ [c, c] $ to any position in the array (at the beginning, between any two integers, or at the end). - You are to perform several operations and split the array into tandem repeats or determine that it is impossible. Please note that you do not have to minimize the number of operations.输入输出格式
输入格式
Each test contains multiple test cases. The first line contains a single integer $ t $ ( $ 1 \le t \le 30\,000 $ ) — the number of test cases. Description of the test cases follows. The first line of each test case contains a single integer $ n $ ( $ 1 \le n \le 500 $ ). The second line contains $ n $ integers $ a_1, a_2, \ldots, a_n $ ( $ 1 \le a_i \le 10^9 $ ) — the initial array. It is guaranteed that the sum of $ n^2 $ over all test cases does not exceed $ 250\,000 $ .
输出格式
For each test case print answer in the following format. If you cannot turn the array into a concatenation of tandem repeats, print a single integer $ -1 $ . Otherwise print the number of operations $ q $ ( $ 0 \le q \le 2 \cdot n^2 $ ) that you want to do. Then print the descriptions of operations. In each of the following $ q $ lines print two integers $ p $ and $ c $ ( $ 1 \le c \le 10^9 $ ), which mean that you insert the integer $ c $ twice after $ p $ elements of the array. If the length of the array is $ m $ before the operation, then the condition $ 0 \le p \le m $ should be satisfied. Then you should print any way to split the resulting array into tandem repeats. First, print a single integer $ d $ , and then print a sequence $ t_1, t_2, \ldots, t_d $ of even integers of size $ d $ ( $ d, t_i \ge 1 $ ). These numbers are the lengths of the subsegments from left to right. Note that the size of the resulting array $ a $ is $ m = n + 2 \cdot q $ . The following statements must hold: - $ m = \sum\limits_{i = 1}^{d}{t_i} $ . - For all integer $ i $ such that $ 1 \le i \le d $ , the sequence $ a_l, a_{l+1}, \ldots, a_r $ is a tandem repeat, where $ l = \sum\limits_{j = 1}^{i - 1}{t_j} + 1 $ , $ r = l + t_i - 1 $ . It can be shown that if the array can be turned into a concatenation of tandem repeats, then there exists a solution satisfying all constraints. If there are multiple answers, you can print any.
输入输出样例
输入样例 #1
4
2
5 7
2
5 5
6
1 3 1 2 2 3
6
3 2 1 1 2 3
输出样例 #1
-1
0
1
2
4
1 3
5 3
5 3
10 3
2
8 6
5
0 3
8 3
5 3
6 2
7 1
4
2 6 6 2