309211: CF1644C. Increase Subarray Sums
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Increase Subarray Sums
题意翻译
### 题目简述 给定一个序列 $\left\{a_n\right\}$ 与 整数 $x$ 定义 $f(k)$ 表示经过如下操作后, 序列 $a$ 中最大的连续子段和: 将 $a$ 中 $k$ 个**不同**的位置上的数加上 $x$ 请求出 $f(k),\ k\in[0, n]$ ### 输入数据 多组数据 $T$ ($1\leq T\leq 5000$) 每组数据的第一行为 $n, x$ ($1\leq n\leq 5000$, $0\leq x\leq 10^5$) 第二行为 $n$ 个整数 $a_1, a_2,\dots,a_n$, ($-10^5\leq a_i\leq 10^5$) 所有数据的 $n$ 的总和不超过 $5000$题目描述
You are given an array $ a_1, a_2, \dots, a_n $ , consisting of $ n $ integers. You are also given an integer value $ x $ . Let $ f(k) $ be the maximum sum of a contiguous subarray of $ a $ after applying the following operation: add $ x $ to the elements on exactly $ k $ distinct positions. An empty subarray should also be considered, it has sum $ 0 $ . Note that the subarray doesn't have to include all of the increased elements. Calculate the maximum value of $ f(k) $ for all $ k $ from $ 0 $ to $ n $ independently.输入输出格式
输入格式
The first line contains a single integer $ t $ ( $ 1 \le t \le 5000 $ ) — the number of testcases. The first line of the testcase contains two integers $ n $ and $ x $ ( $ 1 \le n \le 5000 $ ; $ 0 \le x \le 10^5 $ ) — the number of elements in the array and the value to add. The second line contains $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ -10^5 \le a_i \le 10^5 $ ). The sum of $ n $ over all testcases doesn't exceed $ 5000 $ .
输出格式
For each testcase, print $ n + 1 $ integers — the maximum value of $ f(k) $ for all $ k $ from $ 0 $ to $ n $ independently.
输入输出样例
输入样例 #1
3
4 2
4 1 3 2
3 5
-2 -7 -1
10 2
-6 -1 -2 4 -6 -1 -4 4 -5 -4
输出样例 #1
10 12 14 16 18
0 4 4 5
4 6 6 7 7 7 7 8 8 8 8