309255: CF1651B. Prove Him Wrong
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Prove Him Wrong
题意翻译
你需要在一个整数序列 $ a $ 上执行一个操作: 1. 选择两个位置 $ i,j\;(i \ne j) $; 2. 使 $ a_i=a_j=|a_i-a_j| $。 接着有一个猜想: 对于每一个有 $ n $ 个整数的序列 $ a $,满足 $ a_i \leq 10^9 $,在执行一个操作后,这个序列的数字总和一定会变小。 现在给你一个整数 $ n $,你需要构造一个长度为 $ n $ 的序列,使得它不满足上面的这个猜想。题目描述
Recently, your friend discovered one special operation on an integer array $ a $ : 1. Choose two indices $ i $ and $ j $ ( $ i \neq j $ ); 2. Set $ a_i = a_j = |a_i - a_j| $ . After playing with this operation for a while, he came to the next conclusion: - For every array $ a $ of $ n $ integers, where $ 1 \le a_i \le 10^9 $ , you can find a pair of indices $ (i, j) $ such that the total sum of $ a $ will decrease after performing the operation. This statement sounds fishy to you, so you want to find a counterexample for a given integer $ n $ . Can you find such counterexample and prove him wrong? In other words, find an array $ a $ consisting of $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ 1 \le a_i \le 10^9 $ ) such that for all pairs of indices $ (i, j) $ performing the operation won't decrease the total sum (it will increase or not change the sum).输入输出格式
输入格式
The first line contains a single integer $ t $ ( $ 1 \le t \le 100 $ ) — the number of test cases. Then $ t $ test cases follow. The first and only line of each test case contains a single integer $ n $ ( $ 2 \le n \le 1000 $ ) — the length of array $ a $ .
输出格式
For each test case, if there is no counterexample array $ a $ of size $ n $ , print NO. Otherwise, print YES followed by the array $ a $ itself ( $ 1 \le a_i \le 10^9 $ ). If there are multiple counterexamples, print any.
输入输出样例
输入样例 #1
3
2
512
3
输出样例 #1
YES
1 337
NO
YES
31 4 159