309339: CF1665A. GCD vs LCM
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
GCD vs LCM
题意翻译
本题有多测。 给定一个正整数 $n$,求一组正整数 $a$, $b$, $c$, $d$,使得 $a+b+c+d=n$,并且 $\gcd(a,b) = \operatorname{lcm}(c,d)$。本题有 SPJ,求出任意一组即可。 **输入格式** 第一行一个正整数 $t$,表示测试数据组数,接下来 $t$ 行,每行一个正整数 $n$。 **输出格式** 对于每组数据,输出任意一组 $a$, $b$, $c$, $d$。数据保证一定有解。 **说明/提示** $4\le n\le 10^9$ $1\le t\le 10^4$题目描述
You are given a positive integer $ n $ . You have to find $ 4 $ positive integers $ a, b, c, d $ such that - $ a + b + c + d = n $ , and - $ \gcd(a, b) = \operatorname{lcm}(c, d) $ . If there are several possible answers you can output any of them. It is possible to show that the answer always exists. In this problem $ \gcd(a, b) $ denotes the [greatest common divisor](https://en.wikipedia.org/wiki/Greatest_common_divisor) of $ a $ and $ b $ , and $ \operatorname{lcm}(c, d) $ denotes the [least common multiple](https://en.wikipedia.org/wiki/Least_common_multiple) of $ c $ and $ d $ .输入输出格式
输入格式
The input consists of multiple test cases. The first line contains a single integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases. Description of the test cases follows. Each test case contains a single line with integer $ n $ ( $ 4 \le n \le 10^9 $ ) — the sum of $ a $ , $ b $ , $ c $ , and $ d $ .
输出格式
For each test case output $ 4 $ positive integers $ a $ , $ b $ , $ c $ , $ d $ such that $ a + b + c + d = n $ and $ \gcd(a, b) = \operatorname{lcm}(c, d) $ .
输入输出样例
输入样例 #1
5
4
7
8
9
10
输出样例 #1
1 1 1 1
2 2 2 1
2 2 2 2
2 4 2 1
3 5 1 1