309360: CF1667E. Centroid Probabilities
Memory Limit:256 MB
Time Limit:3 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Centroid Probabilities
题意翻译
对于所有点数为 $n$ 的树,如果其满足 对于所有 $i\in [2,n]$,与 $i$ 相连的 $j$ 中有且只有一个点 $j$ 满足 $j<i$ ,那么我们称其为好树 对于 $1\sim n$ 每个点求出来有多少好树满足重心为 $i$ 这里重心定义为删去这个点后形成的所有连通块大小均小于 $\frac{n-1}2$ 数据范围 $3\le n\le 2\times 10^5$ 且 $n$ 为奇数(所以不存在树有多个重心的情况)题目描述
Consider every tree (connected undirected acyclic graph) with $ n $ vertices ( $ n $ is odd, vertices numbered from $ 1 $ to $ n $ ), and for each $ 2 \le i \le n $ the $ i $ -th vertex is adjacent to exactly one vertex with a smaller index. For each $ i $ ( $ 1 \le i \le n $ ) calculate the number of trees for which the $ i $ -th vertex will be the centroid. The answer can be huge, output it modulo $ 998\,244\,353 $ . A vertex is called a centroid if its removal splits the tree into subtrees with at most $ (n-1)/2 $ vertices each.输入输出格式
输入格式
The first line contains an odd integer $ n $ ( $ 3 \le n < 2 \cdot 10^5 $ , $ n $ is odd) — the number of the vertices in the tree.
输出格式
Print $ n $ integers in a single line, the $ i $ -th integer is the answer for the $ i $ -th vertex (modulo $ 998\,244\,353 $ ).
输入输出样例
输入样例 #1
3
输出样例 #1
1 1 0
输入样例 #2
5
输出样例 #2
10 10 4 0 0
输入样例 #3
7
输出样例 #3
276 276 132 36 0 0 0