309410: CF1674G. Remove Directed Edges
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Remove Directed Edges
题意翻译
给出一个 n 点 m 边的有向无环图,你需要从中移除一些边,使得对于每一个点,其入度减少(如果原来有入边),出度也减少(如果原来有出边)。 **当删完边以后**,如果有一个点集,满足对于任两点(i, j)可以从 i 走到 j **或**可以从 j 走到 i,那就称其为可爱的。 现在要构造一种删边方案,使得删边后其中一个可爱的点集最大,输出这个点集大小。 输入数据第一行由两个正整数 n, m 组成,代表 n 个点和 m 条边。第 2 至 m + 1 行包含两个数 u, v,分别表示一条有向边的两个顶点。题目描述
You are given a directed acyclic graph, consisting of $ n $ vertices and $ m $ edges. The vertices are numbered from $ 1 $ to $ n $ . There are no multiple edges and self-loops. Let $ \mathit{in}_v $ be the number of incoming edges (indegree) and $ \mathit{out}_v $ be the number of outgoing edges (outdegree) of vertex $ v $ . You are asked to remove some edges from the graph. Let the new degrees be $ \mathit{in'}_v $ and $ \mathit{out'}_v $ . You are only allowed to remove the edges if the following conditions hold for every vertex $ v $ : - $ \mathit{in'}_v < \mathit{in}_v $ or $ \mathit{in'}_v = \mathit{in}_v = 0 $ ; - $ \mathit{out'}_v < \mathit{out}_v $ or $ \mathit{out'}_v = \mathit{out}_v = 0 $ . Let's call a set of vertices $ S $ cute if for each pair of vertices $ v $ and $ u $ ( $ v \neq u $ ) such that $ v \in S $ and $ u \in S $ , there exists a path either from $ v $ to $ u $ or from $ u $ to $ v $ over the non-removed edges. What is the maximum possible size of a cute set $ S $ after you remove some edges from the graph and both indegrees and outdegrees of all vertices either decrease or remain equal to $ 0 $ ?输入输出格式
输入格式
The first line contains two integers $ n $ and $ m $ ( $ 1 \le n \le 2 \cdot 10^5 $ ; $ 0 \le m \le 2 \cdot 10^5 $ ) — the number of vertices and the number of edges of the graph. Each of the next $ m $ lines contains two integers $ v $ and $ u $ ( $ 1 \le v, u \le n $ ; $ v \neq u $ ) — the description of an edge. The given edges form a valid directed acyclic graph. There are no multiple edges.
输出格式
Print a single integer — the maximum possible size of a cute set $ S $ after you remove some edges from the graph and both indegrees and outdegrees of all vertices either decrease or remain equal to $ 0 $ .
输入输出样例
输入样例 #1
3 3
1 2
2 3
1 3
输出样例 #1
2
输入样例 #2
5 0
输出样例 #2
1
输入样例 #3
7 8
7 1
1 3
6 2
2 3
7 2
2 4
7 3
6 3
输出样例 #3
3