309503: CF1690C. Restoring the Duration of Tasks

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Restoring the Duration of Tasks

题目描述

Recently, Polycarp completed $ n $ successive tasks. For each completed task, the time $ s_i $ is known when it was given, no two tasks were given at the same time. Also given is the time $ f_i $ when the task was completed. For each task, there is an unknown value $ d_i $ ( $ d_i>0 $ ) — duration of task execution. It is known that the tasks were completed in the order in which they came. Polycarp performed the tasks as follows: - As soon as the very first task came, Polycarp immediately began to carry it out. - If a new task arrived before Polycarp finished the previous one, he put the new task at the end of the queue. - When Polycarp finished executing the next task and the queue was not empty, he immediately took a new task from the head of the queue (if the queue is empty — he just waited for the next task). Find $ d_i $ (duration) of each task. ### 题目翻译 Polycarp(以下称为Pc)得到了 $n\ (1\le n\le2\times 10^5)$ 个任务。 每个任务有两个属性 $s_i$ 和 $f_i$,分别表示这个任务开始和结束的时间。 Pc在任务开始时间没到的时候什么都不会做,时间一到就会立马开始。 在任务期间,下一个任务来了Pc会把这个任务加到任务列表的末尾。 当处理完一个任务后,如果任务列表还有任务时,会立马处理第一个任务。 当处理完一个任务后,如果任务列表没有任务了,Pc什么都不会做直到下一个任务来临。 处理每个任务的时间就是原文中的 $d_i$。 测试数据个数 $t\ (1\le t\le 10^4)$。 **输入:** 第一行,$t$。 对于每一个测试数据: 第一行一个任务数 $n$, 第二行 $n$ 个正整数,表示 $s_1<s_2<s_2<...<s_n\ (0\le s_i\le 10^9)$, 第三行 $n$ 个正整数,表示 $f_1<f_2<f_3<...<f_n\ (s_i<f_i\le 10^9)$。 **输出:** 对于每一个测试数据,一行 $n$ 个正整数,表示 $d_i$。

输入输出格式

输入格式


The first line contains a single integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases. The descriptions of the input data sets follow. The first line of each test case contains one integer $ n $ ( $ 1 \le n \le 2 \cdot 10^5 $ ). The second line of each test case contains exactly $ n $ integers $ s_1 < s_2 < \dots < s_n $ ( $ 0 \le s_i \le 10^9 $ ). The third line of each test case contains exactly $ n $ integers $ f_1 < f_2 < \dots < f_n $ ( $ s_i < f_i \le 10^9 $ ). It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 2 \cdot 10^5 $ .

输出格式


For each of $ t $ test cases print $ n $ positive integers $ d_1, d_2, \dots, d_n $ — the duration of each task.

输入输出样例

输入样例 #1

4
3
0 3 7
2 10 11
2
10 15
11 16
9
12 16 90 195 1456 1569 3001 5237 19275
13 199 200 260 9100 10000 10914 91066 5735533
1
0
1000000000

输出样例 #1

2 7 1 
1 1 
1 183 1 60 7644 900 914 80152 5644467 
1000000000

说明

First test case: The queue is empty at the beginning: $ [ ] $ . And that's where the first task comes in. At time $ 2 $ , Polycarp finishes doing the first task, so the duration of the first task is $ 2 $ . The queue is empty so Polycarp is just waiting. At time $ 3 $ , the second task arrives. And at time $ 7 $ , the third task arrives, and now the queue looks like this: $ [7] $ . At the time $ 10 $ , Polycarp finishes doing the second task, as a result, the duration of the second task is $ 7 $ . And at time $ 10 $ , Polycarp immediately starts doing the third task and finishes at time $ 11 $ . As a result, the duration of the third task is $ 1 $ . ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1690C/d2350660c42c220190947ba223600b0328cd0bf5.png)An example of the first test case.

Input

暂时还没有翻译

Output

**题目描述**

Pc完成了n个连续的任务。给出了每个任务开始的时间s_i,并且没有两个任务是同时给出的。还给出了任务完成的时间f_i。对于每个任务,有一个未知的值d_i(d_i>0)——任务执行的时间。

任务是按到来的顺序完成的。Pc执行任务如下:

- 当第一个任务到来时,Pc立即开始执行。
- 如果在Pc完成前一个任务之前有新任务到来,他会把新任务放在队列的末尾。
- 当Pc完成下一个任务并且队列不为空时,他会立即从队列的开头取一个新的任务(如果队列为空——他只是在等待下一个任务)。

找到每个任务d_i(持续时间)。

**输入输出格式**

**输入格式**

第一行包含一个整数t(1≤t≤10^4)——测试用例的数量。

每个测试用例的第一行包含一个整数n(1≤n≤2×10^5)。

每个测试用例的第二行包含精确的n个整数s1
每个测试用例的第三行包含精确的n个整数f1
保证所有测试用例的n之和不超过2×10^5。

**输出格式**

对于每个测试用例,打印n个正整数d1、d2、...、dn——每个任务的持续时间。**题目描述** Pc完成了n个连续的任务。给出了每个任务开始的时间s_i,并且没有两个任务是同时给出的。还给出了任务完成的时间f_i。对于每个任务,有一个未知的值d_i(d_i>0)——任务执行的时间。 任务是按到来的顺序完成的。Pc执行任务如下: - 当第一个任务到来时,Pc立即开始执行。 - 如果在Pc完成前一个任务之前有新任务到来,他会把新任务放在队列的末尾。 - 当Pc完成下一个任务并且队列不为空时,他会立即从队列的开头取一个新的任务(如果队列为空——他只是在等待下一个任务)。 找到每个任务d_i(持续时间)。 **输入输出格式** **输入格式** 第一行包含一个整数t(1≤t≤10^4)——测试用例的数量。 每个测试用例的第一行包含一个整数n(1≤n≤2×10^5)。 每个测试用例的第二行包含精确的n个整数s1

加入题单

上一题 下一题 算法标签: