309882: CF1750F. Majority
Memory Limit:1024 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Majority
题意翻译
定义一个$01$串$s$是好的,当且仅当$s$可以通过以下操作变成全是$1$的串,可以操作无数次 选择$i,j$满足$i<j,s_i=s_j=1,2\sum_{k=i}^js_k\ge j-i+1$,然后将$k\in[i,j]$的$s_k$全部改为$1$ 给定$n$和$m$,求有多少个长度为$n$的$01$串是好的,对$m$取模题目描述
Everyone was happy coding, until suddenly a power shortage happened and the best competitive programming site went down. Fortunately, a system administrator bought some new equipment recently, including some UPSs. Thus there are some servers that are still online, but we need all of them to be working in order to keep the round rated. Imagine the servers being a binary string $ s $ of length $ n $ . If the $ i $ -th server is online, then $ s_i = 1 $ , and $ s_i = 0 $ otherwise. A system administrator can do the following operation called electricity spread, that consists of the following phases: - Select two servers at positions $ 1 \le i < j \le n $ such that both are online (i.e. $ s_i=s_j=1 $ ). The spread starts only from online servers. - Check if we have enough power to make the spread. We consider having enough power if the number of turned on servers in range $ [i, j] $ is at least the number of turned off servers in range $ [i, j] $ . More formally, check whether $ 2 \cdot (s_i + s_{i+1} + \ldots + s_j) \ge j - i + 1 $ . - If the check is positive, turn on all the offline servers in range $ [i, j] $ . More formally, make $ s_k := 1 $ for all $ k $ from $ i $ to $ j $ . We call a binary string $ s $ of length $ n $ rated if we can turn on all servers (i.e. make $ s_i = 1 $ for $ 1 \le i \le n $ ) using the electricity spread operation any number of times (possibly, $ 0 $ ). Your task is to find the number of rated strings of length $ n $ modulo $ m $ .输入输出格式
输入格式
The first and only line contains two integers $ n $ and $ m $ ( $ 1 \le n \le 5000 $ , $ 10 \le m \le 10^9 $ ) — the length of the string and the required module.
输出格式
Print a single integer — the number of rated binary strings of length $ n $ . Since this number can be large, print it modulo $ m $ .
输入输出样例
输入样例 #1
2 100
输出样例 #1
1
输入样例 #2
3 10
输出样例 #2
2
输入样例 #3
4 3271890
输出样例 #3
4
输入样例 #4
17 123456
输出样例 #4
32347
说明
In the first example, the only rated string is 11. So the answer is $ 1 $ . In the second example, the rated strings are: - 111; - 101, because we can perform an operation with $ i = 1 $ and $ j = 3 $ . So the answer is $ 2 $ .In the third sample, the rated strings are: - 1001; - 1111; - 1011; - 1101. So the answer is $ 4 $ .Input
题意翻译
定义一个$01$串$s$是好的,当且仅当$s$可以通过以下操作变成全是$1$的串,可以操作无数次 选择$i,j$满足$i<j,s_i=s_j=1,2\sum_{k=i}^js_k\ge j-i+1$,然后将$k\in[i,j]$的$s_k$全部改为$1$ 给定$n$和$m$,求有多少个长度为$n$的$01$串是好的,对$m$取模Output
**题目大意**:
定义一个01串s是好的,当且仅当s可以通过以下操作变成全是1的串,可以操作无数次:
选择i,j满足i
给定n和m,求有多少个长度为n的01串是好的,对m取模。
**输入输出数据格式**:
**输入格式**:
第一行包含两个整数n和m(1≤n≤5000,10≤m≤10^9)——字符串的长度和所需的模数。
**输出格式**:
打印一个整数——长度为n的好的二进制字符串的数量。由于这个数字可能很大,请以m为模打印它。**题目大意**: 定义一个01串s是好的,当且仅当s可以通过以下操作变成全是1的串,可以操作无数次: 选择i,j满足i
定义一个01串s是好的,当且仅当s可以通过以下操作变成全是1的串,可以操作无数次:
选择i,j满足i
给定n和m,求有多少个长度为n的01串是好的,对m取模。
**输入输出数据格式**:
**输入格式**:
第一行包含两个整数n和m(1≤n≤5000,10≤m≤10^9)——字符串的长度和所需的模数。
**输出格式**:
打印一个整数——长度为n的好的二进制字符串的数量。由于这个数字可能很大,请以m为模打印它。**题目大意**: 定义一个01串s是好的,当且仅当s可以通过以下操作变成全是1的串,可以操作无数次: 选择i,j满足i