309968: CF1765K. Torus Path

Memory Limit:512 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Torus Path

题意翻译

给定一个 $n$ 行 $n$ 列的网格,每一格内都有一个非负整数。你的分数等于你走过格子的分数之和。你需要从 $(1,1)$ 移动到 $(n,n)$,并获取尽可能多的分数。你可以执行以下操作: + 向下或向右走一格,前提是你走到的格子未被访问过; + 当你走到终点后,你无法再次移动; + 如果你在 $(x,n)$,当你执行向右的操作时,你会出现在 $(x,1)$; + 如果你在 $(n,y)$,当你执行向下的操作时,你会出现在 $(1,y)$。 输出你能获取到的最大分数。 $2\le n \le 100$,每个方格内的分数 $a_{i,j}\le 10^9$。

题目描述

You are given a square grid with $ n $ rows and $ n $ columns, where each cell has a non-negative integer written in it. There is a chip initially placed at the top left cell (the cell with coordinates $ (1, 1) $ ). You need to move the chip to the bottom right cell (the cell with coordinates $ (n, n) $ ). In one step, you can move the chip to the neighboring cell, but: 1. you can move only right or down. In other words, if the current cell is $ (x, y) $ , you can move either to $ (x, y + 1) $ or to $ (x + 1, y) $ . There are two special cases: - if the chip is in the last column (cell $ (x, n) $ ) and you're moving right, you'll teleport to the first column (to the cell $ (x, 1) $ ); - if the chip is in the last row (cell $ (n, y) $ ) and you're moving down, you'll teleport to the first row (to the cell $ (1, y) $ ). 2. you cannot visit the same cell twice. The starting cell is counted visited from the beginning (so you cannot enter it again), and you can't leave the finishing cell once you visit it. Your total score is counted as the sum of numbers in all cells you have visited. What is the maximum possible score you can achieve?

输入输出格式

输入格式


The first line contains the single integer $ n $ ( $ 2 \le n \le 200 $ ) — the number of rows and columns in the grid. Next $ n $ lines contains the description of each row of the grid. The $ i $ -th line contains $ n $ integers $ a_{i, 1}, a_{i, 2}, \dots, a_{i, n} $ ( $ 0 \le a_{i, j} \le 10^9 $ ) where $ a_{i, j} $ is the number written in the cell $ (i, j) $ .

输出格式


Print one integer — the maximum possible score you can achieve.

输入输出样例

输入样例 #1

2
1 2
3 4

输出样例 #1

8

输入样例 #2

3
10 10 10
10 0 10
10 10 10

输出样例 #2

80

Input

题意翻译

给定一个 $n$ 行 $n$ 列的网格,每一格内都有一个非负整数。你的分数等于你走过格子的分数之和。你需要从 $(1,1)$ 移动到 $(n,n)$,并获取尽可能多的分数。你可以执行以下操作: + 向下或向右走一格,前提是你走到的格子未被访问过; + 当你走到终点后,你无法再次移动; + 如果你在 $(x,n)$,当你执行向右的操作时,你会出现在 $(x,1)$; + 如果你在 $(n,y)$,当你执行向下的操作时,你会出现在 $(1,y)$。 输出你能获取到的最大分数。 $2\le n \le 100$,每个方格内的分数 $a_{i,j}\le 10^9$。

Output

**题目大意:**
给定一个 n 行 n 列的网格,每个格子都有一个非负整数。你的分数等于你走过格子的分数之和。你需要从 (1,1) 移动到 (n,n),并获取尽可能多的分数。你可以执行以下操作:
- 向下或向右走一格,前提是你走到的格子未被访问过;
- 当你走到终点后,你无法再次移动;
- 如果你在 (x,n),当你执行向右的操作时,你会出现在 (x,1);
- 如果你在 (n,y),当你执行向下的操作时,你会出现在 (1,y)。

输出你能获取到的最大分数。

**输入输出数据格式:**
- **输入格式:**
- 第一行包含单个整数 n(2≤n≤200)——网格的行数和列数。
- 接下来的 n 行包含网格每行的描述。第 i 行包含 n 个整数 $ a_{i, 1}, a_{i, 2}, \dots, a_{i, n} $($ 0 \le a_{i, j} \le 10^9 $),其中 $ a_{i, j} $ 是格子 (i, j) 中的数字。
- **输出格式:**
- 打印一个整数——你可以获得的最大可能分数。

**输入输出样例:**
- **输入样例 #1:**
```
2
1 2
3 4
```
- **输出样例 #1:**
```
8
```
- **输入样例 #2:**
```
3
10 10 10
10 0 10
10 10 10
```
- **输出样例 #2:**
```
80
```**题目大意:** 给定一个 n 行 n 列的网格,每个格子都有一个非负整数。你的分数等于你走过格子的分数之和。你需要从 (1,1) 移动到 (n,n),并获取尽可能多的分数。你可以执行以下操作: - 向下或向右走一格,前提是你走到的格子未被访问过; - 当你走到终点后,你无法再次移动; - 如果你在 (x,n),当你执行向右的操作时,你会出现在 (x,1); - 如果你在 (n,y),当你执行向下的操作时,你会出现在 (1,y)。 输出你能获取到的最大分数。 **输入输出数据格式:** - **输入格式:** - 第一行包含单个整数 n(2≤n≤200)——网格的行数和列数。 - 接下来的 n 行包含网格每行的描述。第 i 行包含 n 个整数 $ a_{i, 1}, a_{i, 2}, \dots, a_{i, n} $($ 0 \le a_{i, j} \le 10^9 $),其中 $ a_{i, j} $ 是格子 (i, j) 中的数字。 - **输出格式:** - 打印一个整数——你可以获得的最大可能分数。 **输入输出样例:** - **输入样例 #1:** ``` 2 1 2 3 4 ``` - **输出样例 #1:** ``` 8 ``` - **输入样例 #2:** ``` 3 10 10 10 10 0 10 10 10 10 ``` - **输出样例 #2:** ``` 80 ```

加入题单

上一题 下一题 算法标签: