310229: CF1801B. Buying gifts

Memory Limit:512 MB Time Limit:3 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

B. Buying giftstime limit per test3 secondsmemory limit per test512 megabytesinputstandard inputoutputstandard output Little Sasha has two friends, whom he wants to please with gifts on the Eighth of March. To do this, he went to the largest shopping center in the city.

There are $n$ departments in the mall, each of which has exactly two stores. For convenience, we number the departments with integers from $1$ to $n$. It is known that gifts in the first store of the $i$ department cost $a_i$ rubles, and in the second store of the $i$ department — $b_i$ rubles.

Entering the mall, Sasha will visit each of the $n$ departments of the mall, and in each department, he will enter exactly one store. When Sasha gets into the $i$-th department, he will perform exactly one of two actions:

  1. Buy a gift for the first friend, spending $a_i$ rubles on it.
  2. Buy a gift for the second friend, spending $b_i$ rubles on it.

Sasha is going to buy at least one gift for each friend. Moreover, he wants to pick up gifts in such a way that the price difference of the most expensive gifts bought for friends is as small as possible so that no one is offended.

More formally: let $m_1$  be the maximum price of a gift bought to the first friend, and $m_2$  be the maximum price of a gift bought to the second friend. Sasha wants to choose gifts in such a way as to minimize the value of $\lvert m_1 - m_2 \rvert$.

Input

Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 1\,000$). The description of the test cases follows.

The first line of each test case contains a single integer $n$ ($2 \le n \le 500\,000$) — the number of departments in the mall.

Each of the following $n$ lines of each test case contains two integers $a_i$ and $b_i$ ($0 \le a_i, b_i \le 10^9$) — the prices of gifts in the first and second store of the $i$ department, respectively.

It is guaranteed that the sum of $n$ over all test cases does not exceed $500\,000$.

Output

Print one integer — the minimum price difference of the most expensive gifts bought to friends.

Example

Input
2
2
1 2
2 1
5
1 5
2 7
3 3
4 10
2 5
Output
0
1
Note

In the first test case, Sasha has two possible options: buy a gift for the first friend in the first department, and the second friend  — in the second department, or vice versa. In the first case, $m_1 = m_2 = 1$, and in the second case — $m_1 = m_2 = 2$. In both cases, the answer is $0$. In the second test case, you can buy gifts for the first friend in the $2$, $4$ and $5$ departments, and for the second friend  — in the $1$ and $3$ departments.So $m_1 = \max(2, 4, 2) = 4$, $m_2 = \max(5, 3) = 5$. The answer is $\lvert 4 - 5 \rvert = 1$.

Input

题意翻译

有 $n$ 个商店,在第 $i$ 个商店会进行下面两个操作之一: - 为朋友 A 买礼物,花费 $a_i$ 元。 - 为朋友 B 买礼物,花费 $b_i$ 元。 求在每个商店进行过以上操作后,朋友 A 和 B 获得的礼物中的最大价值之差的最小值。 有 $t$ 组测试数据。 数据范围:$1\le t\le1000$,$2\le n\le5\times 10^5$,$0\le a_i, b_i\le 10^9$。

Output

题目大意:
小萨沙想给两个朋友在3月8日买礼物,为此他去了城里最大的购物中心。购物中心有n个部门,每个部门有两个商店,分别编号为1到n。已知第i部门第一个商店的礼物价格为a_i卢布,第二个商店的价格为b_i卢布。萨沙会进入每个部门的其中一个商店购买礼物,对于每个部门,他可以选择为第一个朋友购买价值为a_i的礼物,或者为第二个朋友购买价值为b_i的礼物。萨沙想为每个朋友至少买一个礼物,并且希望两个朋友收到的最贵礼物价格之差尽可能小。形式化地说,设m_1是给第一个朋友买的礼物中的最高价格,m_2是给第二个朋友买的礼物中的最高价格,萨沙希望最小化|m_1 - m_2|的值。

输入输出数据格式:
输入:
- 第一行包含一个整数t(1 ≤ t ≤ 1000),表示测试用例的数量。
- 每个测试用例的第一行包含一个整数n(2 ≤ n ≤ 500000),表示部门的数量。
- 接下来的n行,每行包含两个整数a_i和b_i(0 ≤ a_i, b_i ≤ 10^9),分别表示第i部门两个商店的礼物价格。

输出:
- 对于每个测试用例,输出一个整数,表示最贵礼物价格差的最小可能值。

示例:
输入:
2
2
1 2
2 1
5
1 5
2 7
3 3
4 10
2 5

输出:
0
1

注意:
在第一个测试用例中,萨沙有两种选择:在第一个部门给第一个朋友买礼物,在第二个部门给第二个朋友买礼物,或者反过来。两种情况下,m_1和m_2都相等,答案为0。在第二个测试用例中,可以在第2、4、5部门给第一个朋友买礼物,在第1、3部门给第二个朋友买礼物。这样m_1为4,m_2为5,答案为|4 - 5| = 1。题目大意: 小萨沙想给两个朋友在3月8日买礼物,为此他去了城里最大的购物中心。购物中心有n个部门,每个部门有两个商店,分别编号为1到n。已知第i部门第一个商店的礼物价格为a_i卢布,第二个商店的价格为b_i卢布。萨沙会进入每个部门的其中一个商店购买礼物,对于每个部门,他可以选择为第一个朋友购买价值为a_i的礼物,或者为第二个朋友购买价值为b_i的礼物。萨沙想为每个朋友至少买一个礼物,并且希望两个朋友收到的最贵礼物价格之差尽可能小。形式化地说,设m_1是给第一个朋友买的礼物中的最高价格,m_2是给第二个朋友买的礼物中的最高价格,萨沙希望最小化|m_1 - m_2|的值。 输入输出数据格式: 输入: - 第一行包含一个整数t(1 ≤ t ≤ 1000),表示测试用例的数量。 - 每个测试用例的第一行包含一个整数n(2 ≤ n ≤ 500000),表示部门的数量。 - 接下来的n行,每行包含两个整数a_i和b_i(0 ≤ a_i, b_i ≤ 10^9),分别表示第i部门两个商店的礼物价格。 输出: - 对于每个测试用例,输出一个整数,表示最贵礼物价格差的最小可能值。 示例: 输入: 2 2 1 2 2 1 5 1 5 2 7 3 3 4 10 2 5 输出: 0 1 注意: 在第一个测试用例中,萨沙有两种选择:在第一个部门给第一个朋友买礼物,在第二个部门给第二个朋友买礼物,或者反过来。两种情况下,m_1和m_2都相等,答案为0。在第二个测试用例中,可以在第2、4、5部门给第一个朋友买礼物,在第1、3部门给第二个朋友买礼物。这样m_1为4,m_2为5,答案为|4 - 5| = 1。

加入题单

上一题 下一题 算法标签: