310425: CF1831E. Hyperregular Bracket Strings
Description
You are given an integer $n$ and $k$ intervals. The $i$-th interval is $[l_i,r_i]$ where $1 \leq l_i \leq r_i \leq n$.
Let us call a regular bracket sequence$^{\dagger,\ddagger}$ of length $n$ hyperregular if for each $i$ such that $1 \leq i \leq k$, the substring $\overline{s_{l_i} s_{l_{i}+1} \ldots s_{r_i}}$ is also a regular bracket sequence.
Your task is to count the number of hyperregular bracket sequences. Since this number can be really large, you are only required to find it modulo $998\,244\,353$.
$^\dagger$ A bracket sequence is a string containing only the characters "(" and ")".
$^\ddagger$ A bracket sequence is called regular if one can turn it into a valid math expression by adding characters + and 1. For example, sequences (())(), (), (()(())) and the empty string are regular, while )(, ((), and (()))( are not.
InputEach test contains multiple test cases. The first line of input contains a single integer $t$ ($1 \le t \le 10^5$) — the number of test cases. The description of test cases follows.
The first line of each test case contains two integers $n$ and $k$ ($1 \le n \le 3 \cdot 10^5$, $0 \le k \le 3 \cdot 10^5$) — the length of the hyperregular bracket sequences and the number of intervals respectively.
The following $k$ lines of each test case contains two integers $l_i$ and $r_i$ ($1 \le l \le r \le n$).
It is guaranteed that the sum of $n$ across all test cases does not exceed $3 \cdot 10^5$ and the sum of $k$ across all test cases does not exceed $3 \cdot 10^5$.
OutputFor each test case, output the number of hyperregular bracket sequences modulo $998\,244\,353$.
ExampleInput7 6 0 5 0 8 1 1 3 10 2 3 4 6 9 1000 3 100 701 200 801 300 901 28 5 1 12 3 20 11 14 4 9 18 19 4 3 1 4 1 4 1 4Output
5 0 0 4 839415253 140 2Note
- For the first testcase, the $5$ hyperregular bracket strings of length $6$ are: ((())), (()()), (())(), ()(()) and ()()().
- For the second testcase, there are no regular bracket strings of length $5$, and consequently, there are no hyperregular bracket strings of length $5$.
- For the third testcase, there are no hyperregular bracket strings of length $8$ for which the substring $[1 \ldots 3]$ is a regular bracket string.
- For the fourth testcase, there $4$ hyperregular bracket strings are: ((())(())), ((())()()), ()()((())) and ()()(()())
Input
Output
有一个整数n和k个区间。第i个区间是[l_i,r_i],其中1≤l_i≤r_i≤n。
我们将长度为n的规则括号序列^†^††称为超规则的,如果对于每个1≤i≤k,子字符串\overline{s_{l_i}s_{l_{i}+1}…s_{r_i}}也是规则括号序列。
任务是计算超规则括号序列的数量。由于这个数字可能非常大,你只需要找到它模998,244,353。
^†^††一个括号序列只包含字符“(”和“)”。
^††††如果一个括号序列可以通过添加字符“+”和“1”将其转换为有效的数学表达式,则称为规则。例如,序列(())(), (),(()(()))和空字符串是规则的,而)、(()和(()))()不是。
输入数据格式:
每个测试包含多个测试用例。输入的第一行包含一个整数t(1≤t≤10^5)——测试用例的数量。接下来是测试用例的描述。
每个测试用例的第一行包含两个整数n和k(1≤n≤3×10^5,0≤k≤3×10^5)——超规则括号序列的长度和区间的数量。
每个测试用例的接下来k行包含两个整数l_i和r_i(1≤l≤r≤n)。
保证所有测试用例的n之和不超过3×10^5,k之和也不超过3×10^5。
输出数据格式:
对于每个测试用例,输出超规则括号序列的数量模998,244,353。题目大意:超规则括号字符串 有一个整数n和k个区间。第i个区间是[l_i,r_i],其中1≤l_i≤r_i≤n。 我们将长度为n的规则括号序列^†^††称为超规则的,如果对于每个1≤i≤k,子字符串\overline{s_{l_i}s_{l_{i}+1}…s_{r_i}}也是规则括号序列。 任务是计算超规则括号序列的数量。由于这个数字可能非常大,你只需要找到它模998,244,353。 ^†^††一个括号序列只包含字符“(”和“)”。 ^††††如果一个括号序列可以通过添加字符“+”和“1”将其转换为有效的数学表达式,则称为规则。例如,序列(())(), (),(()(()))和空字符串是规则的,而)、(()和(()))()不是。 输入数据格式: 每个测试包含多个测试用例。输入的第一行包含一个整数t(1≤t≤10^5)——测试用例的数量。接下来是测试用例的描述。 每个测试用例的第一行包含两个整数n和k(1≤n≤3×10^5,0≤k≤3×10^5)——超规则括号序列的长度和区间的数量。 每个测试用例的接下来k行包含两个整数l_i和r_i(1≤l≤r≤n)。 保证所有测试用例的n之和不超过3×10^5,k之和也不超过3×10^5。 输出数据格式: 对于每个测试用例,输出超规则括号序列的数量模998,244,353。