310789: CF1888B. Raspberries
Description
You are given an array of integers $a_1, a_2, \ldots, a_n$ and a number $k$ ($2 \leq k \leq 5$). In one operation, you can do the following:
- Choose an index $1 \leq i \leq n$,
- Set $a_i = a_i + 1$.
Find the minimum number of operations needed to make the product of all the numbers in the array $a_1 \cdot a_2 \cdot \ldots \cdot a_n$ divisible by $k$.
InputEach test consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$) — the number of test cases. Then follows the description of the test cases.
The first line of each test case contains two integers $n$ and $k$ ($2 \leq n \leq 10^5$, $2 \leq k \leq 5$) — the size of the array $a$ and the number $k$.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10$).
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
OutputFor each test case, output the minimum number of operations needed to make the product of all the numbers in the array divisible by $k$.
ExampleInput15 2 5 7 3 3 3 7 4 1 5 2 9 7 7 3 9 5 5 5 4 1 2 3 7 4 9 5 1 5 9 5 1 3 4 6 3 6 3 4 6 1 5 3 4 1 5 9 4 4 1 4 1 1 3 4 3 5 3 4 5 8 9 9 3 2 5 1 6 2 5 10 10 4 5 1 6 1 1 2 5 7 7Output
2 2 1 0 2 0 1 2 0 1 1 4 0 4 3Note
In the first test case, we need to choose the index $i = 2$ twice. After that, the array will be $a = [7, 5]$. The product of all the numbers in the array is $35$.
In the fourth test case, the product of the numbers in the array is $120$, which is already divisible by $5$, so no operations are needed.
In the eighth test case, we can perform two operations by choosing $i = 2$ and $i = 3$ in any order. After that, the array will be $a = [1, 6, 10]$. The product of the numbers in the array is $60$.
Output
输入输出数据格式:
输入:
- 第一行包含一个整数 $t$ ($1 \leq t \leq 10^4$),表示测试用例的数量。
- 每个测试用例包含两行:
- 第一行包含两个整数 $n$ 和 $k$ ($2 \leq n \leq 10^5$, $2 \leq k \leq 5$),分别表示数组 $a$ 的大小和数 $k$。
- 第二行包含 $n$ 个整数 $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10$)。
输出:
- 对于每个测试用例,输出使数组中所有元素乘积能被 $k$ 整除所需的最少操作次数。题目大意:给定一个整数数组 $a_1, a_2, \ldots, a_n$ 和一个数 $k$ ($2 \leq k \leq 5$)。每次操作可以选择数组中的一个元素 $a_i$ 并将其值加1。求使数组中所有元素乘积 $a_1 \cdot a_2 \cdot \ldots \cdot a_n$ 能被 $k$ 整除所需的最少操作次数。 输入输出数据格式: 输入: - 第一行包含一个整数 $t$ ($1 \leq t \leq 10^4$),表示测试用例的数量。 - 每个测试用例包含两行: - 第一行包含两个整数 $n$ 和 $k$ ($2 \leq n \leq 10^5$, $2 \leq k \leq 5$),分别表示数组 $a$ 的大小和数 $k$。 - 第二行包含 $n$ 个整数 $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10$)。 输出: - 对于每个测试用例,输出使数组中所有元素乘积能被 $k$ 整除所需的最少操作次数。