311381: CF1977C. Nikita and LCM
Description
Nikita is a student passionate about number theory and algorithms. He faces an interesting problem related to an array of numbers.
Suppose Nikita has an array of integers $a$ of length $n$. He will call a subsequence$^\dagger$ of the array special if its least common multiple (LCM) is not contained in $a$. The LCM of an empty subsequence is equal to $0$.
Nikita wonders: what is the length of the longest special subsequence of $a$? Help him answer this question!
$^\dagger$ A sequence $b$ is a subsequence of $a$ if $b$ can be obtained from $a$ by the deletion of several (possibly, zero or all) elements, without changing the order of the remaining elements. For example, $[5,2,3]$ is a subsequence of $[1,5,7,8,2,4,3]$.
InputEach test contains multiple test cases. The first line of input contains a single integer $t$ ($1 \le t \le 2000$) — the number of test cases. The description of the test cases follows.
The first line of each test case contains a single integer $n$ ($1 \le n \le 2000$) — the length of the array $a$.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) — the elements of the array $a$.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2000$.
OutputFor each test case, output a single integer — the length of the longest special subsequence of $a$.
ExampleInput6 5 1 2 4 8 16 6 3 2 10 20 60 1 7 2 3 4 6 12 100003 1200036 9 2 42 7 3 6 7 7 1 6 8 4 99 57 179 10203 2 11 40812 1 1Output
0 4 4 5 8 0Note
In the first test case, the LCM of any non-empty subsequence is contained in $a$, so the answer is $0$.
In the second test case, we can take the subsequence $[3, 2, 10, 1]$, its LCM is equal to $30$, which is not contained in $a$.
In the third test case, we can take the subsequence $[2, 3, 6, 100\,003]$, its LCM is equal to $600\,018$, which is not contained in $a$.
Output
Nikita是一个对数论和算法充满热情的学生。他遇到了一个与数字数组相关的问题。
假设Nikita有一个长度为n的整数数组a。如果它的最小公倍数(LCM)不在a中,他将称这个数组的子序列为“特殊的”。空子序列的LCM等于0。
Nikita想知道:a的最长“特殊”子序列的长度是多少?帮助他回答这个问题!
输入输出数据格式:
输入:
第一行包含一个整数t(1≤t≤2000)——测试用例的数量。
每个测试用例的第一行包含一个整数n(1≤n≤2000)——数组a的长度。
每个测试用例的第二行包含n个整数a1,a2,…,an(1≤ai≤10^9)——数组a的元素。
所有测试用例的n之和不超过2000。
输出:
对于每个测试用例,输出一个整数——a的最长“特殊”子序列的长度。题目大意: Nikita是一个对数论和算法充满热情的学生。他遇到了一个与数字数组相关的问题。 假设Nikita有一个长度为n的整数数组a。如果它的最小公倍数(LCM)不在a中,他将称这个数组的子序列为“特殊的”。空子序列的LCM等于0。 Nikita想知道:a的最长“特殊”子序列的长度是多少?帮助他回答这个问题! 输入输出数据格式: 输入: 第一行包含一个整数t(1≤t≤2000)——测试用例的数量。 每个测试用例的第一行包含一个整数n(1≤n≤2000)——数组a的长度。 每个测试用例的第二行包含n个整数a1,a2,…,an(1≤ai≤10^9)——数组a的元素。 所有测试用例的n之和不超过2000。 输出: 对于每个测试用例,输出一个整数——a的最长“特殊”子序列的长度。