406354: GYM102386 K Малыш и Карлсон

Memory Limit:0 MB Time Limit:0 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

K. Малыш и Карлсонограничение по времени на тест1 секундаограничение по памяти на тест256 мегабайтвводстандартный вводвыводстандартный вывод

На соревнованиях по программированию не раз встречались задачи про Малыша и Карлсона, делящих между собой сладости. Чтобы не повторяться, каждый автор задачи хочет добавить в своё условие изюминку, которая бы выделила задачу на фоне остальных. То Малыш и Карлсон делят многослойный торт, то они играют в игру на плитке шоколада. Дошла очередь и до самих героев: какую задачу можно придумать, если бы Малыш и Карлсон жили в параллельной вселенной?

Малыш и Карлсон из параллельной вселенной — образованные и воспитанные люди. Они не страдают от лишнего веса, и каждый из них готов отдать другу половину всех сладостей. Сегодня они выиграли в командном соревновании по программированию большой торт (в параллельной вселенной команды состоят из двух человек). Торт имеет форму выпуклого $$$N$$$-угольника. Малыш и Карлсон тут же решили поделить его на две равные по площади части, причём сделать это надо с математической точностью.

Для этого они ввели декартову систему координат и измерили координаты вершин торта. Все координаты оказались целыми числами. Осталось провести прямолинейный разрез. Чтобы не допустить даже малейшей погрешности, было принято решение выбрать две точки $$$A$$$ и $$$B$$$ с целочисленными координатами и сделать разрез по прямой, проходящий через эти две точки.

После долгого соревнования Малыш и Карлсон устали, поэтому они обратились к своим братьям и сёстрам из параллельной вселенной за помощью. Найдите две различные точки $$$A$$$ и $$$B$$$, чтобы прямая, проходящая через них, разделила торт на две равные по площади части. Координаты точек должны быть целыми числами, не превышающими $$$10^{18}$$$ по модулю.

Входные данные

В первой строке находится целое число $$$N$$$  — количество вершин многоугольника ($$$3 \leq N \leq 10^3$$$).

В следующих $$$N$$$ строках через пробел записаны целые числа $$$x_i$$$ и $$$y_i$$$ — координаты $$$i$$$-й вершины многоугольника ($$$-10^5 \leq x_i, y_i \leq 10^5$$$).

Гарантируется, что вершины задают выпуклый многоугольник в порядке обхода против часовой стрелки, никакие две точки не совпадают и никакие три точки не лежат на одной прямой.

Выходные данные

Если решения не существует, в единственной строке выведите $$$-1$$$.

Иначе, выведите две строки. В первой строке через пробел выведите целые числа $$$x_a$$$ и $$$y_a$$$ — координаты точки $$$A$$$ ($$$-10^{18} \le x_a, y_a \le 10^{18}$$$). Во второй строке в аналогичном формате выведите координаты точки $$$B$$$. Точки не должны совпадать.

ПримерВходные данные
4
0 3
3 0
3 6
0 7
Выходные данные
-1 4
4 4

加入题单

上一题 下一题 算法标签: