409112: GYM103439 D LIS Counting
Description
You are given integers $$$N, M$$$ with and a prime modulo $$$P$$$.
Consider all permutations of length $$$N \cdot M$$$ such that the length of their longest increasing subsequence equals $$$N$$$ and the length of their longest decreasing subsequence equals $$$M$$$.
Define $$$f(pos, val)$$$ for each $$$1 \le pos, val \le N \cdot M$$$ as the number of such permutations in which the $$$pos$$$-th element of the permutation equals to $$$val$$$.
Find $$$f(pos, val)$$$ for all $$$1 \le pos, val \le NM$$$, modulo $$$P$$$.
InputThe only line of input contains three integers $$$N$$$ $$$M$$$ $$$P$$$ ($$$1 \le N \cdot M \le 100$$$, $$$10^8 \le P \le 10^9$$$, $$$P$$$ is prime).
OutputPrint a table of size $$$NM \times NM$$$, the $$$val$$$-th value in $$$pos$$$-th line should be equal to $$$f(pos, val) \bmod P$$$.
ExamplesInput3 2 998244353Output
0 10 10 5 0 0 10 0 0 6 9 0 10 0 0 4 6 5 5 6 4 0 0 10 0 9 6 0 0 10 0 0 5 10 10 0Input
1 7 100000007Output
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0