409145: GYM103446 J Two Binary Strings Problem
Description
Given an integer $$$n$$$ and two binary strings $$$a_1a_2\cdots a_n$$$ (denoted by $$$A$$$) and $$$b_1b_2\cdots b_n$$$ (denoted by $$$B$$$) of length $$$n$$$.
Define function: $$$$$$ f(l,r)=\begin{cases} 1,& \text{if}\;\sum\limits_{i=l}^r a_i > \frac{r-l+1}{2} \\ 0,&\text{otherwise}
\end{cases} $$$$$$
We say an integer $$$k$$$ is lucky, iff for each $$$i\,(1\le i \le n)$$$, $$$f\big(\max(i-k+1,1),i \big)=b_i$$$ holds.
For each integer $$$k\,(1\le k \le n)$$$, determine if it is lucky.
InputThe first line contains one integer $$$T\,(1\le T \le 50000)$$$, denoting the number of the test cases.
For each test case:
The first line contains one integer $$$n\,(1\le n \le 50000)$$$, denoting the length of the two binary strings.
The second line contains one binary string $$$A$$$.
The third line contains one binary string $$$B$$$.
It is guaranteed that $$$\sum n \le 50000$$$.
OutputFor each test case:
Output one line containing a binary string $$$c_1c_2\cdots c_n$$$ of length $$$n$$$, where $$$c_i=1$$$ iff $$$i$$$ is lucky while $$$c_i=0$$$ iff $$$i$$$ is not lucky.
ExampleInput2 5 11010 11000 8 11110000 11111100Output
01000 00001100