410384: GYM104015 B Computer Game
Description
Monocarp is playing a computer game. Now he wants to complete the first level of this game.
A level is a rectangular grid of $$$2$$$ rows and $$$n$$$ columns. Monocarp controls a character, which starts in cell $$$(1, 1)$$$ — at the intersection of the $$$1$$$-st row and the $$$1$$$-st column.
Monocarp's character can move from one cell to another in one step if the cells are adjacent by side and/or corner. Formally, it is possible to move from cell $$$(x_1, y_1)$$$ to cell $$$(x_2, y_2)$$$ in one step if $$$|x_1 - x_2| \le 1$$$ and $$$|y_1 - y_2| \le 1$$$. Obviously, it is prohibited to go outside the grid.
There are traps in some cells. If Monocarp's character finds himself in such a cell, he dies, and the game ends.
To complete a level, Monocarp's character should reach cell $$$(2, n)$$$ — at the intersection of row $$$2$$$ and column $$$n$$$.
Help Monocarp determine if it is possible to complete the level.
InputThe first line contains a single integer $$$n$$$ ($$$3 \le n \le 100$$$) — the number of columns.
Next two lines describe the level. The $$$i$$$-th of these lines describes the $$$i$$$-th line of the level — the line consists of the characters '0' and '1'. The character '0' corresponds to a safe cell, the character '1' corresponds to a trap cell.
An additional constraint on the input: cells $$$(1, 1)$$$ and $$$(2, n)$$$ are safe.
OutputOutput YES if it is possible to complete the level, and NO otherwise.
ExamplesInput3 000 000Output
YESInput
4 0011 1100Output
YESInput
4 0111 1110Output
NOInput
6 010101 101010Output
YESNote
In the first example, one of the possible paths is $$$(1, 1) \rightarrow (2, 2) \rightarrow (2, 3)$$$.
In the second example, one of the possible paths is $$$(1, 1) \rightarrow (1, 2) \rightarrow (2, 3) \rightarrow (2, 4)$$$.
In the fourth example, one of the possible paths is $$$(1, 1) \rightarrow (2, 2) \rightarrow (1, 3) \rightarrow (2, 4) \rightarrow (1, 5) \rightarrow (2, 6)$$$.