8558: BZOJ4558:[JLoi2016]方

Memory Limit:256 MB Time Limit:1 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

上帝说,不要圆,要方,于是便有了这道题。由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形 上帝把我们派到了一个有N行M列的方格图上,图上一共有(N+1)×(M+1)个格点,我们需要做的就是找出这些格点形 成了多少个正方形(换句话说,正方形的四个顶点都是格点)。但是这个问题对于我们来说太难了,因为点数太多 了,所以上帝删掉了这(N+1)×(M+1)中的K个点。既然点变少了,问题也就变简单了,那么这个时候这些格点组成 了多少个正方形呢?


输入格式

第一行三个整数 N, M, K, 代表棋盘的行数、 列数和不能选取的顶点个数。 保证 N, M >= 1, K <=(N + 1) × (M + 1)。约定每行的格点从上到下依次用整数 0 到 N 编号,每列的格点依次用 0到 M 编号。接下来 K 行,每 行两个整数 x,y 代表第 x 行第 y 列的格点被删掉了。保证 0 <=x <=N<=10^6, 0 <=y<=M<=10^6,K<=2*1000且不 会出现重复的格点。


输出格式

 仅一行一个正整数, 代表正方形个数对 100000007( 10^8 + 7) 取模之后的值


样例输入

2 2 4
1 0
1 2
0 1
2 1

样例输出

1

提示

没有写明提示


题目来源

没有写明来源

加入题单

上一题 下一题 算法标签: