10002: [CSP-S 2022] 星战

Memory Limit:512 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:15 Solved:6

Description

# [CSP-S 2022] 星战 ## 题目描述 在这一轮的星际战争中,我方在宇宙中建立了 $n$ 个据点,以 $m$ 个单向虫洞连接。我们把终点为据点 $u$ 的所有虫洞归为据点 $u$ 的虫洞。 战火纷飞之中这些虫洞很难长久存在,敌人的打击随时可能到来。这些打击中的有效打击可以分为两类: 1. 敌人会摧毁某个虫洞,这会使它连接的两个据点无法再通过这个虫洞直接到达,但这样的打击无法摧毁它连接的两个据点。 2. 敌人会摧毁某个据点,由于虫洞的主要技术集中在出口处,这会导致该据点的所有还未被摧毁的虫洞被一同摧毁。而从这个据点出发的虫洞则**不会摧毁**。 注意:摧毁只会导致虫洞不可用,而不会消除它的存在。 为了抗击敌人并维护各部队和各据点之间的联系,我方发展出了两种特种部队负责修复虫洞: - A 型特种部队则可以将某个特定的虫洞修复。 - B 型特种部队可以将某据点的所有损坏的虫洞修复。 考虑到敌人打击的特点,我方并未在据点上储备过多的战略物资。因此只要这个据点的某一条虫洞被修复,处于可用状态,那么这个据点也是可用的。 我方掌握了一种苛刻的空间特性,利用这一特性我方战舰可以沿着虫洞瞬移到敌方阵营,实现精确打击。 为了把握发动反攻的最佳时机,指挥部必须关注战场上的所有变化,为了寻找一个能够进行反攻的时刻。总指挥认为: - 如果从我方的任何据点出发,在选择了合适的路线的前提下,可以进行无限次的虫洞穿梭(可以多次经过同一据点或同一虫洞),那么这个据点就可以**实现反击**。 - 为了使虫洞穿梭的过程连续,尽量减少战舰在据点切换虫洞时的质能损耗,当且仅当**只有一个从该据点出发的虫洞可用**时,这个据点可以**实现连续穿梭**。 - 如果我方所有据点都可以**实现反击**,也都可以**实现连续穿梭**,那么这个时刻就是一个绝佳的**反攻**时刻。 总司令为你下达命令,要求你根据战场上实时反馈的信息,迅速告诉他当前的时刻是否能够进行一次**反攻**。 ## 输入格式 输入的第一行包含两个正整数 $n,m$。 接下来 $m$ 行每行两个数 $u,v$,表示一个从据点 $u$ 出发到据点 $v$ 的虫洞。保证 $u \ne v$,保证不会有两条相同的虫洞。初始时所有的虫洞和据点都是完好的。 接下来一行一个正整数 $q$ 表示询问个数。 接下来 $q$ 行每行表示一次询问或操作。首先读入一个正整数 $t$ 表示指令类型: - 若 $t = 1$,接下来两个整数 $u, v$ 表示敌人摧毁了从据点 $u$ 出发到据点 $v$ 的虫洞。保证该虫洞存在且未被摧毁。 - 若 $t = 2$,接下来一个整数 $u$ 表示敌人摧毁了据点 $u$。如果该据点的虫洞已全部被摧毁,那么这次袭击不会有任何效果。 - 若 $t = 3$,接下来两个整数 $u, v$ 表示我方修复了从据点 $u$ 出发到据点 $v$ 的虫洞。保证该虫洞存在且被摧毁。 - 若 $t = 4$,接下来一个整数 $u$ 表示我方修复了据点 $u$。如果该据点没有被摧毁的虫洞,那么这次修复不会有任何效果。 在每次指令执行之后,你需要判断能否进行一次反攻。如果能则输出 `YES` 否则输出 `NO`。 ## 输出格式 输出一共 $q$ 行。对于每个指令,输出这个指令执行后能否进行反攻。 ## 样例 #1 ### 样例输入 #1 ``` 3 6 2 3 2 1 1 2 1 3 3 1 3 2 11 1 3 2 1 2 3 1 1 3 1 1 2 3 1 3 3 3 2 2 3 1 3 1 3 1 3 4 2 1 3 2 ``` ### 样例输出 #1 ``` NO NO YES NO YES NO NO NO YES NO NO ``` ## 提示 **【样例解释 \#1】** 虫洞状态可以参考下面的图片, 图中的边表示存在且未被摧毁的虫洞: ![](https://cdn.luogu.com.cn/upload/image_hosting/giqzyc7r.png) **【样例 \#2】** 见附件中的 `galaxy/galaxy2.in` 与 `galaxy/galaxy2.ans`。 **【样例 \#3】** 见附件中的 `galaxy/galaxy3.in` 与 `galaxy/galaxy3.ans`。 **【样例 \#4】** 见附件中的 `galaxy/galaxy4.in` 与 `galaxy/galaxy4.ans`。 **【数据范围】** 对于所有数据保证:$1 \le n \le 5 \times {10}^5$,$1 \le m \le 5 \times {10}^5$,$1 \le q \le 5 \times {10}^5$。 | 测试点 | $n \le$ | $m \le$ | $q \le$ | 特殊限制 | | :-----------: | :-----------: | :-----------: | :-----------: | :-----------: | | $1 \sim 3$ | $10$ | $20$ | $50$ | 无 | | $4 \sim 8$ | ${10}^3$ | ${10}^4$ | ${10}^3$ | 无 | | $9 \sim 10$ | $5 \times {10}^5$ | $5 \times {10}^5$ | $5 \times {10}^5$ | 保证没有 $t = 2$ 和 $t = 4$ 的情况 | | $11 \sim 12$ | $5 \times {10}^5$ | $5 \times {10}^5$ | $5 \times {10}^5$ | 保证没有 $t = 4$ 的情况 | | $13 \sim 16$ | ${10}^5$ | $5 \times {10}^5$ | $5 \times {10}^5$ | 无 | | $17 \sim 20$ | $5 \times {10}^5$ | $5\times 10^5$ | $5 \times {10}^5$ | 无 |

Sample Input Copy


Sample Output Copy


加入题单

上一题 下一题 算法标签: