102463: [AtCoder]ABC246 D - 2-variable Function
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $400$ points
Problem Statement
Given an integer $N$, find the smallest integer $X$ that satisfies all of the conditions below.
- $X$ is greater than or equal to $N$.
- There is a pair of non-negative integers $(a, b)$ such that $X=a^3+a^2b+ab^2+b^3$.
Constraints
- $N$ is an integer.
- $0 \le N \le 10^{18}$
Input
Input is given from Standard Input in the following format:
$N$
Output
Print the answer as an integer.
Sample Input 1
9
Sample Output 1
15
For any integer $X$ such that $9 \le X \le 14$, there is no $(a, b)$ that satisfies the condition in the statement.
For $X=15$, $(a,b)=(2,1)$ satisfies the condition.
Sample Input 2
0
Sample Output 2
0
$N$ itself may satisfy the condition.
Sample Input 3
999999999989449206
Sample Output 3
1000000000000000000
Input and output may not fit into a $32$-bit integer type.
Input
题意翻译
给定整数 $N$,请你找到最小的整数 $X$,满足: - $X \ge N$ - 存在一对非负整数 $(a, b)$,使得 $X = a^3 + a^2b + ab^2 + b^3$。Output
分数:$400$分
问题描述
给定一个整数$N$,找到满足以下所有条件的最小整数$X$。
- $X$大于等于$N$。
- 存在一对非负整数$(a, b)$,使得$X=a^3+a^2b+ab^2+b^3$。
约束条件
- $N$是一个整数。
- $0 \le N \le 10^{18}$
输入
从标准输入按照以下格式获取输入:
$N$
输出
以整数形式打印答案。
样例输入1
9
样例输出1
15
对于满足$9 \le X \le 14$的任何整数$X$,不存在满足题目条件的$(a, b)$。
对于$X=15$,$(a,b)=(2,1)$满足条件。
样例输入2
0
样例输出2
0
$N$本身可能满足条件。
样例输入3
999999999989449206
样例输出3
1000000000000000000
输入和输出可能不适合$32$位整数类型。