102926: [Atcoder]ABC292 G - Count Strictly Increasing Sequences

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:1 Solved:0

Description

Score : $600$ points

Problem Statement

You are given a sequence $S_1,\ldots,S_N$ of length-$M$ strings consisting of digits (0123456789) and ?.

There are $10^q$ ways to replace the occurrences of ? with digits independently, where $q$ is the total number of ? in $S_1,\ldots,S_N$. Among them, how many satisfy $S_1\lt S_2 \lt \ldots \lt S_N$ when the resulting strings are seen as integers? Find this count modulo $998244353$.

The resulting strings may have leading zeros. For instance, 0000000292 is seen as $292$.

Constraints

  • $2 \leq N \leq 40$
  • $1 \leq M \leq 40$
  • $N$ and $M$ are integers.
  • $S_i$ is a string of length $M$ consisting of digits and ?.

Input

The input is given from Standard Input in the following format:

$N$ $M$
$S_1$
$\vdots$
$S_N$

Output

Print the answer.


Sample Input 1

3 2
?0
??
05

Sample Output 1

4

Here are the four desired replacements.

  • Replace the first character of $S_1$ with 0, and the first and second characters of $S_2$ with 0 and 1, respectively.
  • Replace the first character of $S_1$ with 0, and the first and second characters of $S_2$ with 0 and 2, respectively.
  • Replace the first character of $S_1$ with 0, and the first and second characters of $S_2$ with 0 and 3, respectively.
  • Replace the first character of $S_1$ with 0, and the first and second characters of $S_2$ with 0 and 4, respectively.

Sample Input 2

2 1
0
0

Sample Output 2

0

Sample Input 3

10 10
1?22??37?4
1??8?0??49
3?02??8044
51?4?8?7??
5?9?20???2
68?7?6?800
?3??2???23
?442312158
??2??921?8
????5?96??

Sample Output 3

137811792

Find the count modulo $998244353$.

Input

题意翻译

你有 $n$ 个数,每个数长度为 $m$。 不过这 $n$ 个数中,可能有某些位不确定,需要你在每个 `?` 位置上 $0$ 到 $9$ 之间填一个数。设你填出来的序列是 $\{S_i\}$。 请你求出,在所有可能的填数方案中,有多少种满足 $S_1 < S_2 < \dots < S_n$?对 $998244353$ 取模。允许前导零存在。 数据范围:$n,m \le 40$。

Output

分数:$600$分

问题描述

给你一个由数字(0123456789)和?组成的长度为$M$的字符串序列$S_1,\ldots,S_N$。

有$10^q$种方法独立地将?替换为数字,其中$q$是$S_1,\ldots,S_N$中?的总数量。其中有多少满足当将得到的字符串视为整数时$S_1\lt S_2 \lt \ldots \lt S_N$?找到这个计数模$998244353$的结果。

得到的字符串可能有前导零。例如,0000000292被视为$292$。

约束

  • $2 \leq N \leq 40$
  • $1 \leq M \leq 40$
  • $N$和$M$是整数。
  • $S_i$是一个由数字和?组成的长度为$M$的字符串。

输入

输入从标准输入以以下格式给出:

$N$ $M$
$S_1$
$\vdots$
$S_N$

输出

打印答案。


样例输入1

3 2
?0
?? 
05

样例输出1

4

以下是四个满足条件的替换方式。

  • 将$S_1$的第一个字符替换为0,将$S_2$的第一个和第二个字符分别替换为01
  • 将$S_1$的第一个字符替换为0,将$S_2$的第一个和第二个字符分别替换为02
  • 将$S_1$的第一个字符替换为0,将$S_2$的第一个和第二个字符分别替换为03
  • 将$S_1$的第一个字符替换为0,将$S_2$的第一个和第二个字符分别替换为04

样例输入2

2 1
0
0

样例输出2

0

样例输入3

10 10
1?22??37?4
1??8?0??49
3?02??8044
51?4?8?7??
5?9?20???2
68?7?6?800
?3??2???23
?442312158
??2??921?8
????5?96??

样例输出3

137811792

找到计数模$998244353$的结果。

HINT

?随便填数字,要求数字串递增,有多少种填法?

加入题单

上一题 下一题 算法标签: