103156: [Atcoder]ABC315 G - Ai + Bj + Ck = X (1 <= i, j, k <= N)
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $550$ points
Problem Statement
You are given integers $N,A,B,C,X$. Find the number of triples of integers $(i,j,k)$ that satisfy all of the following conditions.
- $1 \le i,j,k \le N$
- $Ai+Bj+Ck=X$
Constraints
- All input values are integers.
- $1 \le N \le 10^6$
- $1 \le A,B,C \le 10^9$
- $1 \le X \le 3 \times 10^{15}$
Input
The input is given from Standard Input in the following format:
$N$ $A$ $B$ $C$ $X$
Output
Print the answer as an integer.
Sample Input 1
5 3 1 5 15
Sample Output 1
3
The following three triples satisfy the conditions.
- $(1,2,2)$ : $3 \times 1 + 1 \times 2 + 5 \times 2 = 15$
- $(2,4,1)$ : $3 \times 2 + 1 \times 4 + 5 \times 1 = 15$
- $(3,1,1)$ : $3 \times 3 + 1 \times 1 + 5 \times 1 = 15$
Sample Input 2
1 1 1 1 1
Sample Output 2
0
Sample Input 3
100000 31415 92653 58979 1000000000
Sample Output 3
2896
Input
Output
分数:550分
问题描述
给你整数$N,A,B,C,X$。找出满足以下所有条件的整数三元组$(i,j,k)$的数量。
- $1 \le i,j,k \le N$
- $Ai+Bj+Ck=X$
约束条件
- 所有输入值都是整数。
- $1 \le N \le 10^6$
- $1 \le A,B,C \le 10^9$
- $1 \le X \le 3 \times 10^{15}$
输入
输入以标准输入的以下格式给出:
$N$ $A$ $B$ $C$ $X$
输出
打印答案为整数。
样例输入1
5 3 1 5 15
样例输出1
3
以下三个三元组满足条件。
- $(1,2,2)$ : $3 \times 1 + 1 \times 2 + 5 \times 2 = 15$
- $(2,4,1)$ : $3 \times 2 + 1 \times 4 + 5 \times 1 = 15$
- $(3,1,1)$ : $3 \times 3 + 1 \times 1 + 5 \times 1 = 15$
样例输入2
1 1 1 1 1
样例输出2
0
样例输入3
100000 31415 92653 58979 1000000000
样例输出3
2896