103157: [Atcoder]ABC315 Ex - Typical Convolution Problem

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $650$ points

Problem Statement

You are given a sequence $(A_1, A_2, \ldots , A_N)$. Let us define a sequence $(F_0, F_1, \ldots , F_N)$ by the following formulae.

  • $F_0 = 1$
  • $F_n = A_n\displaystyle\sum_{i+j<n}F_iF_j$ $(1 \leq n \leq N)$

Find $F_1, \ldots , F_N$ modulo $998244353$.

Constraints

  • $1 \leq N \leq 2 \times 10^5$
  • $0 \leq A_i < 998244353$
  • All input values are integers.

Input

The input is given from Standard Input in the following format:

$N$
$A_1$ $A_2$ $\ldots$ $A_N$

Output

Print $F_1, \ldots , F_N$ modulo $998244353$ in this order, with spaces in between.


Sample Input 1

5
1 2 3 4 5

Sample Output 1

1 6 48 496 6240

$F_1 = A_1F_0F_0 = 1$. $F_2 = A_2(F_0F_0+F_0F_1+F_1F_0) = 6$. Similarly, we find $F_3 = 48, F_4 = 496, F_5 = 6240$.


Sample Input 2

3
12345 678901 2345678

Sample Output 2

12345 790834943 85679169

Input

Output

得分:$650$分

问题描述

给你一个序列$(A_1, A_2, \ldots , A_N)$。 让我们用以下公式定义一个序列$(F_0, F_1, \ldots , F_N)$。

  • $F_0 = 1$
  • $F_n = A_n\displaystyle\sum_{i+j<n}F_iF_j$ $(1 \leq n \leq N)$

找出$F_1, \ldots , F_N$对$998244353$取模的结果。

限制条件

  • $1 \leq N \leq 2 \times 10^5$
  • $0 \leq A_i < 998244353$
  • 所有的输入值都是整数。

输入

输入以以下格式从标准输入给出:

$N$
$A_1$ $A_2$ $\ldots$ $A_N$

输出

按顺序打印出$F_1, \ldots , F_N$对$998244353$取模的结果,之间用空格隔开。


样例输入1

5
1 2 3 4 5

样例输出1

1 6 48 496 6240

$F_1 = A_1F_0F_0 = 1$。 $F_2 = A_2(F_0F_0+F_0F_1+F_1F_0) = 6$。 类似地,我们发现$F_3 = 48, F_4 = 496, F_5 = 6240$。


样例输入2

3
12345 678901 2345678

样例输出2

12345 790834943 85679169

加入题单

上一题 下一题 算法标签: