308854: CF1584G. Eligible Segments
Memory Limit:256 MB
Time Limit:3 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Eligible Segments
题意翻译
给定在平面上的 $n$ 个点 $P_i$,求出有多少个点对 $(i,j)$,使得对于任意 $P_k$,满足 $P_k$ 到**线段** $P_iP_j$ 的距离 $\le R$。 $1\le n\le 3000$。题目描述
You are given $ n $ distinct points $ p_1, p_2, \ldots, p_n $ on the plane and a positive integer $ R $ . Find the number of pairs of indices $ (i, j) $ such that $ 1 \le i < j \le n $ , and for every possible $ k $ ( $ 1 \le k \le n $ ) the distance from the point $ p_k $ to the segment between points $ p_i $ and $ p_j $ is at most $ R $ .输入输出格式
输入格式
The first line contains two integers $ n $ , $ R $ ( $ 1 \le n \le 3000 $ , $ 1 \le R \le 10^5 $ ) — the number of points and the maximum distance between a point and a segment. Each of the next $ n $ lines contains two integers $ x_i $ , $ y_i $ ( $ -10^5 \le x_i, y_i \le 10^5 $ ) that define the $ i $ -th point $ p_i=(x_i, y_i) $ . All points are distinct. It is guaranteed that the answer does not change if the parameter $ R $ is changed by at most $ 10^{-2} $ .
输出格式
Print the number of suitable pairs $ (i, j) $ .
输入输出样例
输入样例 #1
4 2
0 1
0 -1
3 0
-3 0
输出样例 #1
1
输入样例 #2
3 3
1 -1
-1 -1
0 1
输出样例 #2
3