308854: CF1584G. Eligible Segments

Memory Limit:256 MB Time Limit:3 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Eligible Segments

题意翻译

给定在平面上的 $n$ 个点 $P_i$,求出有多少个点对 $(i,j)$,使得对于任意 $P_k$,满足 $P_k$ 到**线段** $P_iP_j$ 的距离 $\le R$。 $1\le n\le 3000$。

题目描述

You are given $ n $ distinct points $ p_1, p_2, \ldots, p_n $ on the plane and a positive integer $ R $ . Find the number of pairs of indices $ (i, j) $ such that $ 1 \le i < j \le n $ , and for every possible $ k $ ( $ 1 \le k \le n $ ) the distance from the point $ p_k $ to the segment between points $ p_i $ and $ p_j $ is at most $ R $ .

输入输出格式

输入格式


The first line contains two integers $ n $ , $ R $ ( $ 1 \le n \le 3000 $ , $ 1 \le R \le 10^5 $ ) — the number of points and the maximum distance between a point and a segment. Each of the next $ n $ lines contains two integers $ x_i $ , $ y_i $ ( $ -10^5 \le x_i, y_i \le 10^5 $ ) that define the $ i $ -th point $ p_i=(x_i, y_i) $ . All points are distinct. It is guaranteed that the answer does not change if the parameter $ R $ is changed by at most $ 10^{-2} $ .

输出格式


Print the number of suitable pairs $ (i, j) $ .

输入输出样例

输入样例 #1

4 2
0 1
0 -1
3 0
-3 0

输出样例 #1

1

输入样例 #2

3 3
1 -1
-1 -1
0 1

输出样例 #2

3

说明

In the first example, the only pair of points $ (-3, 0) $ , $ (3, 0) $ is suitable. The distance to the segment between these points from the points $ (0, 1) $ and $ (0, -1) $ is equal to $ 1 $ , which is less than $ R=2 $ . In the second example, all possible pairs of points are eligible.

Input

题意翻译

给定在平面上的 $n$ 个点 $P_i$,求出有多少个点对 $(i,j)$,使得对于任意 $P_k$,满足 $P_k$ 到**线段** $P_iP_j$ 的距离 $\le R$。 $1\le n\le 3000$。

加入题单

上一题 下一题 算法标签: