309619: CF1707F. Bugaboo

Memory Limit:1024 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Bugaboo

题意翻译

对于一个序列 $a_1,a_2,...,a_n$,定义一次变换为变为序列 $b_1,b_2,...,b_n$,其中 $b_i=a_i\oplus a_{(i\bmod n)+1}$,$\oplus$ 表示异或。 给定 $n,t,w$,称一个序列 $c_1,c_2,...,c_n(0\le c_i < 2^w)$ 是好的,当且仅当存在一个序列$a_1,a_2,...,a_n$ 经过 $t$ 次变换后恰好为 $c$。 给定序列 $c$,但其中有一些位置缺失了,只有 $m$ 个位置知道,又有 $q$ 次修改,每次修改给定 $f,g,p$,表示把 $c_f$ 变为 $g$,若 $g=-1$ 表示变为缺失。你需要在每次修改后求出有多少把缺失位置填上任意数的方案是的 $c$ 是一个好的序列,答案模 $p$ 输出。

题目描述

A transformation of an array of positive integers $ a_1,a_2,\dots,a_n $ is defined by replacing $ a $ with the array $ b_1,b_2,\dots,b_n $ given by $ b_i=a_i\oplus a_{(i\bmod n)+1} $ , where $ \oplus $ denotes the bitwise XOR operation. You are given integers $ n $ , $ t $ , and $ w $ . We consider an array $ c_1,c_2,\dots,c_n $ ( $ 0 \le c_i \le 2^w-1 $ ) to be bugaboo if and only if there exists an array $ a_1,a_2,\dots,a_n $ such that after transforming $ a $ for $ t $ times, $ a $ becomes $ c $ . For example, when $ n=6 $ , $ t=2 $ , $ w=2 $ , then the array $ [3,2,1,0,2,2] $ is bugaboo because it can be given by transforming the array $ [2,3,1,1,0,1] $ for $ 2 $ times: $ $ [2,3,1,1,0,1]\to [2\oplus 3,3\oplus 1,1\oplus 1,1\oplus 0,0\oplus 1,1\oplus 2]=[1,2,0,1,1,3]; \\ [1,2,0,1,1,3]\to [1\oplus 2,2\oplus 0,0\oplus 1,1\oplus 1,1\oplus 3,3\oplus 1]=[3,2,1,0,2,2]. $ $ </p><p>And the array $ \[4,4,4,4,0,0\] $ is not bugaboo because $ 4 &gt; 2^2 - 1 $ . The array $ \[2,3,3,3,3,3\] $ is also not bugaboo because it can't be given by transforming one array for $ 2 $ times.</p><p>You are given an array $ c $ with some positions lost (only $ m $ positions are known at first and the remaining positions are lost). And there are $ q $ modifications, where each modification is changing a position of $ c $ . A modification can possibly change whether the position is lost or known, and it can possibly redefine a position that is already given.</p><p>You need to calculate how many possible arrays $ c $ (with arbitrary elements on the lost positions) are bugaboos after each modification. Output the $ i $ -th answer modulo $ p\_i $ ( $ p\_i $ is a given array consisting of $ q$ elements).

输入输出格式

输入格式


The first line contains four integers $ n $ , $ m $ , $ t $ and $ w $ ( $ 2\le n\le 10^7 $ , $ 0\le m\le \min(n, 10^5) $ , $ 1\le t\le 10^9 $ , $ 1\le w\le 30 $ ). The $ i $ -th line of the following $ m $ lines contains two integers $ d_i $ and $ e_i $ ( $ 1\le d_i\le n $ , $ 0\le e_i< 2^w $ ). It means the position $ d_i $ of the array $ c $ is given and $ c_{d_i}=e_i $ . It is guaranteed that $ 1\le d_1<d_2<\ldots<d_m\le n $ . The next line contains only one number $ q $ ( $ 1\le q\le 10^5 $ ) — the number of modifications. The $ i $ -th line of the following $ q $ lines contains three integers $ f_i $ , $ g_i $ , $ p_i $ ( $ 1\le f_i\le n $ , $ -1\le g_i< 2^w $ , $ 11\le p_i\le 10^9+7 $ ). The value $ g_i=-1 $ means changing the position $ f_i $ of the array $ c $ to a lost position, otherwise it means changing the position $ f_i $ of the array $ c $ to a known position, and $ c_{f_i}=g_i $ . The value $ p_i $ means you need to output the $ i $ -th answer modulo $ p_i $ .

输出格式


The output contains $ q $ lines, denoting your answers.

输入输出样例

输入样例 #1

3 2 1 1
1 1
3 1
4
2 0 123456789
2 1 111111111
1 -1 987654321
3 -1 555555555

输出样例 #1

1
0
1
2

输入样例 #2

24 8 5 4
4 4
6 12
8 12
15 11
16 7
20 2
21 9
22 12
13
2 13 11
3 15 12
5 7 13
9 3 14
10 5 15
11 15 16
13 14 17
14 1 18
18 9 19
19 6 20
23 10 21
24 8 22
21 13 23

输出样例 #2

1
4
9
2
1
0
1
10
11
16
16
0
16

说明

In the first example, $ n=3 $ , $ t=1 $ , and $ w=1 $ . Let $ ? $ denote a lost position of $ c $ . In the first query, $ c=[1,0,1] $ . The only possible array $ [1,0,1] $ is bugaboo because it can be given by transforming $ [0,1,1] $ once. So the answer is $ 1\bmod 123\,456\,789 = 1 $ . In the second query, $ c=[1,1,1] $ . The only possible array $ [1,1,1] $ is not bugaboo. So the answer is $ 0\bmod 111\,111\,111 = 0 $ . In the third query, $ c=[?,1,1] $ . There are two possible arrays $ [1,1,1] $ and $ [0,1,1] $ . Only $ [0,1,1] $ is bugaboo because it can be given by transforming $ [1,1,0] $ once. So the answer is $ 1\bmod 987\,654\,321=1 $ . In the fourth query, $ c=[?,1,?] $ . There are four possible arrays. $ [0,1,1] $ and $ [1,1,0] $ are bugaboos. $ [1,1,0] $ can be given by performing $ [1,0,1] $ once. So the answer is $ 2\bmod 555\,555\,555=2 $ .

Input

题意翻译

对于一个序列 $a_1,a_2,...,a_n$,定义一次变换为变为序列 $b_1,b_2,...,b_n$,其中 $b_i=a_i\oplus a_{(i\bmod n)+1}$,$\oplus$ 表示异或。 给定 $n,t,w$,称一个序列 $c_1,c_2,...,c_n(0\le c_i < 2^w)$ 是好的,当且仅当存在一个序列$a_1,a_2,...,a_n$ 经过 $t$ 次变换后恰好为 $c$。 给定序列 $c$,但其中有一些位置缺失了,只有 $m$ 个位置知道,又有 $q$ 次修改,每次修改给定 $f,g,p$,表示把 $c_f$ 变为 $g$,若 $g=-1$ 表示变为缺失。你需要在每次修改后求出有多少把缺失位置填上任意数的方案是的 $c$ 是一个好的序列,答案模 $p$ 输出。

Output

**题目大意:**
给定一个长度为n的序列a,定义一次变换为变为序列b,其中b_i = a_i XOR a_{(i mod n) + 1}。给定n、t、w,称一个序列c是好的,当且仅当存在一个序列a,经过t次变换后恰好为c。给定序列c,但其中有一些位置缺失了,只有m个位置知道,又有q次修改,每次修改给定f、g、p,表示把c_f变为g,若g=-1表示变为缺失。求出每次修改后有多少种填上任意数的方案使得c是好的序列,答案模p输出。

**输入输出数据格式:**
- 输入格式:
- 第一行四个整数n、m、t、w。
- 接下来m行,每行两个整数d_i、e_i,表示c_{d_i}=e_i。
- 接下来一行一个整数q,表示修改次数。
- 接下来q行,每行三个整数f_i、g_i、p_i,表示修改操作。
- 输出格式:
- 对于每次修改,输出一个整数,表示答案模p_i的值。

**输入输出样例:**
- 输入样例1:
```
3 2 1 1
1 1
3 1
4
2 0 123456789
2 1 111111111
1 -1 987654321
3 -1 555555555
```
- 输出样例1:
```
1
0
1
2
```
- 输入样例2:
```
24 8 5 4
4 4
6 12
8 12
15 11
16 7
20 2
21 9
22 12
13
2 13 11
3 15 12
5 7 13
9 3 14
10 5 15
11 15 16
13 14 17
14 1 18
18 9 19
19 6 20
23 10 21
24 8 22
21 13 23
```
- 输出样例2:
```
1
4
9
2
1
0
1
10
11
16
16
0
16
```**题目大意:** 给定一个长度为n的序列a,定义一次变换为变为序列b,其中b_i = a_i XOR a_{(i mod n) + 1}。给定n、t、w,称一个序列c是好的,当且仅当存在一个序列a,经过t次变换后恰好为c。给定序列c,但其中有一些位置缺失了,只有m个位置知道,又有q次修改,每次修改给定f、g、p,表示把c_f变为g,若g=-1表示变为缺失。求出每次修改后有多少种填上任意数的方案使得c是好的序列,答案模p输出。 **输入输出数据格式:** - 输入格式: - 第一行四个整数n、m、t、w。 - 接下来m行,每行两个整数d_i、e_i,表示c_{d_i}=e_i。 - 接下来一行一个整数q,表示修改次数。 - 接下来q行,每行三个整数f_i、g_i、p_i,表示修改操作。 - 输出格式: - 对于每次修改,输出一个整数,表示答案模p_i的值。 **输入输出样例:** - 输入样例1: ``` 3 2 1 1 1 1 3 1 4 2 0 123456789 2 1 111111111 1 -1 987654321 3 -1 555555555 ``` - 输出样例1: ``` 1 0 1 2 ``` - 输入样例2: ``` 24 8 5 4 4 4 6 12 8 12 15 11 16 7 20 2 21 9 22 12 13 2 13 11 3 15 12 5 7 13 9 3 14 10 5 15 11 15 16 13 14 17 14 1 18 18 9 19 19 6 20 23 10 21 24 8 22 21 13 23 ``` - 输出样例2: ``` 1 4 9 2 1 0 1 10 11 16 16 0 16 ```

加入题单

上一题 下一题 算法标签: