305269 | CF1001A. Generate plus state or minus state | 0 | 0 | 0.000% |
305270 | CF1001B. Generate Bell state | 0 | 0 | 0.000% |
305271 | CF1001C. Generate GHZ state | 0 | 0 | 0.000% |
305272 | CF1001D. Distinguish plus state and minus state | 0 | 0 | 0.000% |
305273 | CF1001E. Distinguish Bell states | 0 | 0 | 0.000% |
305274 | CF1001F. Distinguish multi-qubit basis states | 0 | 0 | 0.000% |
305275 | CF1001G. Oracle for f(x) = k-th element of x | 0 | 0 | 0.000% |
305276 | CF1001H. Oracle for f(x) = parity of the number of 1s in x | 0 | 0 | 0.000% |
305277 | CF1001I. Deutsch-Jozsa algorithm | 0 | 0 | 0.000% |
305278 | CF1002A1. Generate superposition of all basis states | 0 | 0 | 0.000% |
305279 | CF1002A2. Generate superposition of zero state and a basis state | 0 | 0 | 0.000% |
305280 | CF1002A3. Generate superposition of two basis states | 0 | 0 | 0.000% |
305281 | CF1002A4. Generate W state | 0 | 0 | 0.000% |
305282 | CF1002B1. Distinguish zero state and W state | 0 | 0 | 0.000% |
305283 | CF1002B2. Distinguish GHZ state and W state | 0 | 0 | 0.000% |
305284 | CF1002B3. Distinguish four 2-qubit states | 0 | 0 | 0.000% |
305285 | CF1002B4. Distinguish four 2-qubit states - 2 | 0 | 0 | 0.000% |
305286 | CF1002C1. Distinguish zero state and plus state with minimum error | 0 | 0 | 0.000% |
305287 | CF1002C2. Distinguish zero state and plus state without errors | 0 | 0 | 0.000% |
305288 | CF1002D1. Oracle for f(x) = b * x mod 2 | 0 | 0 | 0.000% |
305289 | CF1002D2. Oracle for f(x) = b * x + (1 - b) * (1 - x) mod 2 | 0 | 0 | 0.000% |
305290 | CF1002D3. Oracle for majority function | 0 | 0 | 0.000% |
305291 | CF1002E1. Bernstein-Vazirani algorithm | 0 | 0 | 0.000% |
305292 | CF1002E2. Another array reconstruction algorithm | 0 | 0 | 0.000% |
305948 | CF1115G1. AND oracle | 0 | 0 | 0.000% |
305949 | CF1115G2. OR oracle | 0 | 0 | 0.000% |
305950 | CF1115G3. Palindrome checker oracle | 0 | 0 | 0.000% |
305951 | CF1115U1. Anti-diagonal unitary | 0 | 0 | 0.000% |
305952 | CF1115U2. Chessboard unitary | 0 | 0 | 0.000% |
305953 | CF1115U3. Block unitary | 0 | 0 | 0.000% |
305954 | CF1116A1. Generate state |00⟩ + |01⟩ + |10⟩ | 0 | 0 | 0.000% |
305955 | CF1116A2. Generate equal superposition of four basis states | 0 | 0 | 0.000% |
305956 | CF1116B1. Distinguish three-qubit states | 0 | 0 | 0.000% |
305957 | CF1116B2. Not A, not B or not C? | 0 | 0 | 0.000% |
305958 | CF1116C1. Alternating bits oracle | 0 | 0 | 0.000% |
305959 | CF1116C2. "Is the bit string periodic?" oracle | 0 | 0 | 0.000% |
305960 | CF1116C3. "Is the number of ones divisible by 3?" oracle | 0 | 0 | 0.000% |
305961 | CF1116D1. Block diagonal matrix | 0 | 0 | 0.000% |
305962 | CF1116D2. Pattern of increasing blocks | 0 | 0 | 0.000% |
305963 | CF1116D3. X-wing fighter | 0 | 0 | 0.000% |
305964 | CF1116D4. TIE fighter | 0 | 0 | 0.000% |
305965 | CF1116D5. Creeper | 0 | 0 | 0.000% |
305966 | CF1116D6. Hessenberg matrix | 0 | 0 | 0.000% |
307426 | CF1356A1. Distinguish I from X | 0 | 0 | 0.000% |
307427 | CF1356A2. Distinguish I from Z | 0 | 0 | 0.000% |
307428 | CF1356A3. Distinguish Z from S | 0 | 0 | 0.000% |
307429 | CF1356A4. Distinguish I ⊗ X from CNOT | 0 | 0 | 0.000% |
307430 | CF1356A5. Distinguish Z from -Z | 0 | 0 | 0.000% |
307431 | CF1356B1. Increment | 0 | 0 | 0.000% |
307432 | CF1356B2. Decrement | 0 | 0 | 0.000% |
307433 | CF1356C. Prepare state |01⟩ + |10⟩ + |11⟩ | 0 | 0 | 0.000% |
307434 | CF1356D1. Quantum Classification - 1 | 0 | 0 | 0.000% |
307435 | CF1356D2. Quantum Classification - 2 | 0 | 0 | 0.000% |
307436 | CF1357A1. Figure out direction of CNOT | 0 | 0 | 0.000% |
307437 | CF1357A2. Distinguish I, CNOTs and SWAP | 0 | 0 | 0.000% |
307438 | CF1357A3. Distinguish H from X | 0 | 0 | 0.000% |
307439 | CF1357A4. Distinguish Rz from R1 | 0 | 0 | 0.000% |
307440 | CF1357A5. Distinguish Rz(θ) from Ry(θ) | 0 | 0 | 0.000% |
307441 | CF1357A6. Distinguish four Pauli gates | 0 | 0 | 0.000% |
307442 | CF1357A7. Distinguish Y, XZ, -Y and -XZ | 0 | 0 | 0.000% |
307443 | CF1357B1. "Is the bit string balanced?" oracle | 0 | 0 | 0.000% |
307444 | CF1357B2. "Is the number divisible by 3?" oracle | 0 | 0 | 0.000% |
307445 | CF1357C1. Prepare superposition of basis states with 0s | 0 | 0 | 0.000% |
307446 | CF1357C2. Prepare superposition of basis states with the same parity | 0 | 0 | 0.000% |
307447 | CF1357D1. Quantum Classification - Dataset 3 | 0 | 0 | 0.000% |
307448 | CF1357D2. Quantum Classification - Dataset 4 | 0 | 0 | 0.000% |
307449 | CF1357D3. Quantum Classification - Dataset 5 | 0 | 0 | 0.000% |
307450 | CF1357D4. Quantum Classification - Dataset 6 | 0 | 0 | 0.000% |
307451 | CF1357D5. Quantum Classification - Dataset 7 | 0 | 0 | 0.000% |
307452 | CF1357E1. Power of quantum Fourier transform | 0 | 0 | 0.000% |
307453 | CF1357E2. Root of quantum Fourier transform | 0 | 0 | 0.000% |
404657 | GYM101605 D Microsoft Body Exchange | 0 | 0 | 0.000% |